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Abstract—In an edge cloud environment, data processing in
self-driving vehicles goes through local processing, communica-
tion, and remote processing. How to schedule these data for
timely processing is critical to guaranteeing the safety of self-
driving vehicles. This scheduling problem is related to the flow
shop scheduling problem, which is NP-complete. In this paper,
different from those in the literature that focus on minimizing
makespan, our objective is to develop algorithms that produce
schedules to minimize the average waiting time AWT and by
taking the priorities of the data types into account since vehicle
data are time-sensitive and different data types have different
emergency levels. In regard to this objective, we propose two
heuristic algorithms: the Priority and AWT-based NEH (PAN )
algorithm, and the Priority-based Aalla’s (PAA) algorithm.
Simulation results show that our proposed algorithms outperform
the preexisting ones and while PAN is a better algorithm
when considering our metrics, PAA is more efficient while still
producing similarly viable results.

Index Terms—average waiting time, cloud, makespan, mobile
edge computing, priority, self-driving vehicle

I. INTRODUCTION

Self-driving vehicles have attracted a lot of attention from

companies and research organizations in recent years and

will reshape the transportation in the future [2]. Self-driving

vehicles combine a variety of sensors to perceive their sur-

roundings, such as radar, lidar, sonar, GPS, odometry and

inertial measurement units [9, 14]. The data collected by

these sensors need to be processed in a timely manner to

identify appropriate navigation paths, as well as obstacles and

relevant signage [9]. Meanwhile, with the development of

cloud computing, more and more mobile applications offload

computation-intensive jobs to remote cloud data centers [8].

Although such operations could substantially enhance the

capability of mobile devices, a long communication delay is

inevitable. To mitigate this problem, some data are processed

locally on the edge resources to be closer to the user. Thus,

the paradigm that combines the resources at the edge and the

cloud, called edge-clouds, also known as edge computing, has

become more and more popular [11].

In an edge computing environment, each data type i col-

lected by sensors in a self-driving vehicle goes through three

stages:

• local processing in the vehicle with time li,
• transmission to cloud (communication) with time ci,

• and remote cloud processing with time ri.

Different data types have different priorities: some are more

urgent than others. Thus, we factor in the priority of each data

type. We assume that a higher number represents a higher

priority. A sample of data is shown in Figure 1.

data type i li ci ri pi
1 4 3 5 5
2 2 4 3 9
3 7 5 4 2
4 6 1 2 6

Fig. 1. A data sample.

With these data, in this paper, we investigate data scheduling

algorithms for self-driving vehicles in an edge computing

environment. Data types in a self-driving vehicle are time-

sensitive. To improve safety and security of self-driving ve-

hicles, we explore schedules to minimize the average waiting

time (AWT ) of n data types using their three-stage processing

times and priorities.

Our problem resembles the flow shop scheduling problem

[1] where all jobs pass the same sequence of machines.

’Machines’ are the ’stages’ here. However, most papers in the

literature [3, 4, 5, 6, 10, 12, 13] aim to minimize makespan

(defined as the total amount of time for a schedule to finish),

rather than AWT of the schedules. Besides, they do not

consider the priorities of the data types. Therefore, it is

necessary for us to study the problem. After looking into a

series of three-stage scheduling algorithms, we come up with

two algorithms that best suit our goal. The first algorithm

is called the Priority and AWT-based NEH (PAN) algorithm,

which is enlightened by the NEH algorithm in [12]. And the

second one is called Priority-based Aalla’s (PAA) algorithm

inspired by the Aalla’s algorithm in [3]. Simulation results

show that they perform the best by our metric comparing

with existing algorithms. Algorithm PAN produces better

schedules than PAA but PAA is more efficient when the

number of data types is large.

The key differences of our work from others are as follows:

• Developing scheduling algorithms with the objective of

minimizing AWT instead of makespan
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• Adding data type priority in scheduling

• Conducting simulations to evaluate the performance of

the proposed algorithms

The rest of the paper is organized as follows: Section II

briefly summarizes the related work. Section III defines the

problem. Section IV presents our solutions. Section V de-

scribes the simulations we have conducted, and the conclusion

is in Section VI.

II. RELATED WORK

The scheduling problem we study here is related to the

flow shop scheduling problem [1]. In a flow shop scheduling

problem, there are m machines that should process n jobs. All

jobs have the same processing order through the machines. The

order of the jobs on each machine can be different.

Most previous research on the flow shop problem is gen-

erally concerned with minimizing makespan. When m = 2
machines, the problem can be solved optimally in O(nlogn)
time by Johnson’s algorithm [10]. If there are m = 3 machines

or more, then the problem is NP-complete [7]. Extended

Johnson’s algorithm [10] can find optimal solutions with three

machines when certain conditions are met. The algorithm

creates two partial schedules H and L based on whether

li ≤ ri, then sorts the elements in H increasingly and L
decreasingly before concatenating them together.

Johnson’s algorithm would go on to serve as the basis

for many future heuristic algorithms. For instance, the CDS

algorithm [4] compares the above Johnson’s schedule against

its own similarly obtained schedule, created by only sort-

ing according to li and ri. CDS chooses the best schedule

according to a minimized makespan. Similar to the CDS

algorithm, Algorithm 2 [5] first extends Johnson’s algorithm,

then shuffles the schedule according to critical data types in

order to check if a schedule with smaller makespan can be

obtained. Another algorithm named Palmer’s Heuristic [13]

weights the processing times of li and ri with a multiplier,

then sorts the entire list of data types by their total weighted

processing time. This is an early utilization of a “slope” that

occurs between stages of a single data type.

Compared to the above algorithms, the Nawaz, Enscore, and

Ham (NEH) algorithm [12] appears to be the best polynomial

heuristics in practice, but at a higher complexity [15]. Finally,

a more recently developed algorithm called Aalla’s algorithm

[3] offers small makespans by calculating a slope factor that

minimizes idle times between data types. By utilizing a greedy

approach, the algorithm appends the next best data type to the

current schedule in each round.

Different from these work, our goal is to find a schedule to

minimize AWT for data types with different priorities.

III. PROBLEM DEFINITION

A self-driving vehicle installs many sensors. These sensors

measure different parameters of the vehicle. The data collected

by the sensors are processed in three stages sequentially: local

processing in the vehicle, sending to cloud (communication),

and cloud (remote) processing. Suppose there are n data types.

Each data type has a vector of four parameters: li, ci, ri, and

pi. The first three parameters represent the processing times

in three stages, respectively, and the last one is the priority of

the data type.

The waiting time wti of a data type i is the time that it is

not processed in any of the three stages after its generation.

It is easier to describe it through its turn around time. The

turnaround time tri of a data type i is the period from the

time the data type was generated to the time the final remote

stage of the data type is complete. Then the waiting time wti
of a data type i is:

wti = tri − (li + ci + ri) (1)

Then the average waiting time AWT of all n data types is:

AWT =
1

n

n∑
i=1

wti (2)

Since self-driving vehicles receive large amount of data

from various sensors and these data are time-sensitive, our

primary goal is to develop algorithms to schedule n data types

to

minimize {AWT} (3)

Our defined problem is related to the flow shop problem

[1], which is NP-complete when n ≥ 3. It becomes more

difficult when priority is added. It is a combinational search

problem with n! possible sequences. If one could enumerate

all n! sequences, the sequences with minimum average waiting

time could be identified, but this procedure is quite expensive

and impractical for large n.

IV. OUR SOLUTIONS

In this section, we propose two algorithms namely PAN
and PAA to generate schedules to minimize AWT .

A. Priority and AWT-based NEH (PAN ) Algorithm

Our first solution Priority and AWT-based NEH (PAN )

algorithm is inspired by the Nawaz, Enscore, and Ham

(NEH) algorithm [12]. The NEH algorithm aims to minimize

makespan and does not consider priorities of the scheduled

elements. We extend it to address our goal. The detailed PAN
algorithm is presented in Figure 2.

In the PAN algorithm, we first do the preprocessing of each

data type by dividing its processing times in the three stages

by its priority. In this way, a higher priority data type will have

smaller processing times so that it can be scheduled earlier. We

then initialize the unscheduled list U by including all the data

types. Next, we sort the data types in U in non-increasing order

by the total processing time Ti (Ti = li+ ci+ri) of each data

type. Then we consider the two possible permutations (τA, τB)

of the first two data types in U , choosing the permutation

that has the minimal AWT and assigning it to the partial

schedule π. For the remaining unscheduled data types, we

consider every possible position a data type i can be inserted in

the current partial schedule π. Each possible insertion schedule

is stored in τi, then the partial schedule π is updated by the
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PAN: Priority and AWT-based NEH Algorithm

1: Inputs: a set of data types with their processing times in

three stages and their priorities.

2: Output: a schedule π that minimizes AWT .

3: For each data type, divide li, ci, and ri by pi;
4: U = {1, . . . , n}; /* initialize the unscheduled list U by

including all the data types */

5: for each data type i do
6: calculate Ti = li + ci + ri; /* total processing time */

7: end for
8: sort U in non-increasing order based on Ti;

9: /* consider the schedules with the first two data types */

10: τA = {U1, U2};
11: τB = {U2, U1};
12: π = τA or τB with minimal AWT ;

13: for i = 3 to n do
14: /* create possible schedules and choose the best */

15: τi = insert Ui at every possible position in π;

16: π = τi with minimal AWT ;

17: end for
18: return π

Fig. 2. The PAN algorithm

τi with the minimal AWT . This process is repeated until all

data types have been scheduled.

If we apply the PAN algorithm to the example in Figure 1,

it returns the schedule π = {2, 4, 1, 3}, which is visualized by

the Gantt chart in Figure 3. This schedule has an AWT = 5.5.

l l2 l4 l1 l3

c c2 c4 c1 c3

r r2 r4 r1 r3

Fig. 3. The Gantt chart of the schedule produced by the PAN algorithm

B. Priority-based Aalla’s (PAA) Algorithm

Our second solution Priority-based Aalla’s (PAA) algo-

rithm is built on the idea of the Aalla’s algorithm [3].

The Aalla’s algorithm minimizes the schedule makespan by

greedily reducing the idle time between two adjacent items.

Therefore we think it will be helpful to reduce the average

waiting time in our problem.

The details of our proposed algorithm PAA are described

in Figure 4. First, like PAN , we do the pre-processing of

the data by dividing the processing times of a data type by

its priority. Next, for each data type i (here renamed as b to

facilitate description), we calculate a slope factor Wb, defined

by:

Wb = cb + 2(rb) (4)

In this slope factor, we give more weight to the processing

times in the later stages. Wb is static once calculated for each

data type. Next, we initialize counter N to the total number

of data types n, set the current schedule π to ∅, and put all

the data types to the unscheduled list U . We initialize the first

data type a to zero.

Then in the main loop, as long as not all the data types

are scheduled, we iterate the following steps. First, for each

data type b in the unscheduled set U , we calculate the total

weighted idle time Ia,b between data type a, the previously

scheduled job (or 0, if a is the first date type) and b, the current

job being considered for appending. The equation for Ia,b is

defined by:

Ia,b = 2(ia,b,c) + ia,b,r, (5)

where ia,b,s is the idle time between two data types in one

stage (s = c or r). In defining the total weighted idle time, we

give a higher penalty to the idle times in earlier stages as any

idle times on these stages tend to delay processing on later

stages.

Next, to decide the best candidate to append to a partial

schedule, we define a ratio Pa,b:

Pa,b = Ia,b/Wb (6)

Among the unscheduled data types in U , we choose the

best data type j which has the minimal Pa, b. In case there

is a tie, we pick j that has the maximal Wb. We then append

data type j to the current schedule π, remove it from U , set a
to j in preparation for the next round, and decrement counter

N by one. This process is repeated until N becomes 1, or all

data types have been scheduled.

If we apply the PAA algorithm to the table in Figure 1, it

returns the schedule π = {2, 1, 4, 3}, visualized by the Gantt

chart in Figure 5. This schedule has an AWT = 5.25.

l l2 l1 l4 l3

c c2 c1 c4 c3

r r2 r1 r4 r3

Fig. 5. A Gantt chart of the schedule produced by the PAA algorithm

V. SIMULATIONS

In this section, we evaluate the performance of our proposed

algorithms by comparing them with existing algorithms using

a simulator written in Python.
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PAA: Priority-based Aalla’s Algorithm

1: Inputs: a set of data types with their processing times in

three stages and their priorities.

2: Output: a schedule π that minimizes AWT .

3: For each data type b, divide lb, cb, and rb by pb
4: for each data type b do
5: calculate Wb;

6: end for
7: N = n, where n is the number of data types

8: π = ∅;
9: U = {1, . . . , n};

10: a = 0;

11: while N > 1 do
12: for b in U do
13: calculate Ia,b;

14: Pa,b = Ia,b/Wb;

15: end for
16: /* choose best j, append to π, remove from U */

17: j = b with min{Pa,b}, and max{Wb} to break ties;

18: π = π ∪ {j};
19: U = U\{j};
20: a = j;

21: N = N − 1;

22: end while
23: return π

Fig. 4. The PAA algorithm

A. Algorithms Compared

We compared PAA and PAN to the following existing

scheduling algorithms, each modified to consider priority of

the data types for fair comparison.

• Extended Johnson’s algorithm [10]

• Algorithm 2 [5]

• Campbell, Dudek, and Smith (CDS) algorithm [4]

• Nawaz, Enscore and Ham (NEH) algorithm [12]

In addition to these algorithms, we also compared our algo-

rithms to the brute-force algorithm, which finds the schedule

with the minimum AWT .

B. Metrics

For our primary metric, we utilized AWT in Equation (2).

Furthermore, in order to measure the advantage of considering

priority pi, we define another metric, satisfaction Si, defined

by the following equation to evaluate how satisfied each data

type is.

Si =

{
1− x−j

n+1−j , if x ≥ j,

1, otherwise
(7)

Si is a ratio that represents how close the order number x
of a scheduled data type i in the generated schedule is to

its priority rank j, where j represents the position of i in a

schedule sorted by priority only. Then the average satisfaction

AS of all data types in a schedule is defined by:

AS =
1

n

n∑
i=1

Si (8)

For AS, a higher value means a better result.
To summarize the effectiveness of every algorithm in terms

of AS and AWT , we define a score metric Ω to combine them.

Metric Ω is a ratio that represents how well both metrics are

met, with a higher value representing a better score.

Ω = ÂS/ ˆAWT (9)

ÂS and ˆAWT are the normalized values of AS and AWT ,

respectively. The normalization allows us to put metrics on

different scales together.

C. Experiment Settings
In the simulations, we feed all the algorithms with the same

data, which contain the processing times of the data types in

the three stages and their priorities. The processing times are

randomly generated in the range of [1, 99] and priorities are

randomly selected in the range of [1, 10].
To test our algorithms with different numbers of n, we tried

n = 6, n = 10, n = 20, n = 50, and n = 100. Each value of

n had 100 runs. In each round, once an algorithm generated a

schedule, we calculated its AWT , AS, and Ω. And after these

100 rounds were finished, we computed the average metrics

for each algorithm across the rounds.

D. Results of Comparing All Algorithms
From the simulations, we found that both PAN and PAA

had higher Ω values than the rest of the algorithms for all

values of n, with PAN scoring higher than PAA. Figure 6

displays the Ω values when n = 6.
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Fig. 6. Ω scores of algorithms, n = 6

These high Ω values show that PAN and PAA do a better

job of both minimizing AWT and maximizing AS. Given that

PAN has the highest Ω, we conclude that PAN is the best

suited algorithm for this research problem.
To confirm our claim, we will compare both PAN and

PAA more closely against the brute-force algorithm that

generates the minimal AWT next.
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E. PAA and PAN vs Brute-Force
We compared PAN and PAA with the brute-force algo-

rithm in terms of AWT and AS. The brute-force algorithm

finds the optimal schedule from all permutations of n data

types.
Obviously, the brute-force algorithm produced schedules

with the smallest AWT overall. However, our proposed PAN
and PAA did not appear to be drastically far off from the

ideal result. Evaluating PAN and PAA, we found that they

had very similar AWT , with PAA having a slightly lower

AWT . Figure 7 shows the comparison of the three algorithms

in terms of AWT when n = 6.
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Fig. 7. AWT of proposed algorithms and brute-force search, n = 6

Next, we analyzed the AS of the three algorithms. From

these results, we found that PAN produced schedules with

a significantly higher AS than PAA. Figure 8 shows the

comparison when n = 6. We conclude that this difference

in satisfaction accounts for the PAN having a higher overall

score. Compared to brute-force, which did not consider prior-

ity at all, both PAN and PAA had higher AS making them

more effective algorithms for our application.

PA
N

PA
A

B
ru

te
-F

or
ce

0.
85

0.
9

A
S

Fig. 8. AS of PAN , PAA, and brute-force algorithms, n = 6

Despite the high satisfaction values of PAN and PAA,

brute-force algorithm’s optimal AWT results in a higher Ω
than PAN and PAA (Figure 9). Nonetheless, the scores of

PAN and PAA are not significantly lower than that of brute-

force.
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Fig. 9. Ω scores of proposed algorithms and brute-force, n = 6

F. Efficiency of the Algorithms

To further compare our proposed algorithms, we looked

into the run times of PAN , PAA, and the brute-force. To

measure these times, we added timers into our simulation to

track how long it took each to produce a schedule. Once we

had calculated the run times for each round’s schedules, we

calculated the average run time for each algorithm across all

rounds.

First, comparing our proposed algorithms to brute-force, we

see that both PAA and PAN are considerably more efficient

(Figure 10). From this result, we conclude that while brute-

force produces minimal AWT , PAN and PAA still produce

quality results while also being much more efficient. For this

reason, we argue that PAA and PAN are more effective than

the brute-force algorithm.
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Fig. 10. Average run time of proposed algorithms and brute-force, n = 6

Looking at our two proposed algorithms, it is clear that the

average run time for PAN is greater than that of PAA (Figure

11). Knowing that PAA produces only one final schedule

whereas PAN produces many more partial schedules, we can

understand how PAA is a more efficient algorithm than PAN .

Furthermore, we analyzed the average run time across

several different values of n data types to see how the run times

would vary with larger data tables. From this experiment, we

found that the larger the value of n and the more data types to
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process, the greater the difference in run time between PAN
and PAA (Figure 12).

0 20 40 60 80 100

0

2

4

·105

ru
n

ti
m

e
(s

ec
)

PAN
PAA

Fig. 12. Average run time of proposed algorithms across different values of
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From this insight, we conclude that while PAN can pro-

duce better schedules in terms of AWT and AS combined,

PAA is much more efficient when there are large quantities

of data types to be scheduled.

VI. CONCLUSION

In this project, we have explored a series of priority-

based three-stage scheduling algorithms for scheduling time-

sensitive data from self-driving vehicles in an edge cloud

environment. In order to ensure that data are processed in a

timely manner, our objective has been to develop algorithms

to reduce the average waiting time by considering data type

priorities. To meet this objective, we have proposed two

heuristic algorithms PAN and PAA. Simulation results have

shown that our proposed algorithms outperform the existing

ones and while PAN is a better algorithm when considering

our metrics, PAA is more efficient while still producing

similarly viable results. Therefore, PAA is better suited when

the data size is large.

In the future, we will explore more efficient and effective

three-stage scheduling algorithms. Additionally, we hope to

look into implementing and testing the algorithms we have

proposed in real self-driving vehicle data systems.
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