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Motivation

• Heterogeneous datasets are prevalent in big-data (e.g., IoT1 and medicine2)
• Data compression is necessary on large datasets
• Using a single compression algorithm on all files is suboptimal

• Compression algos exploit patterns/redundancies that are unique to particular types of data
• Exhaustively considering many algorithms per file is infeasible

Hypothesis
We can quickly predict an effective lossless compression
algorithm for each file in a heterogeneous dataset.

1Cios and Moore, “Uniqueness of medical data mining”.
2Wang, “Heterogeneous Data and Big Data Analytics”.
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Highlights

• Approach
• We call our approach "MLcomp"
• Offloads computation by training a nearest-neighbor (1NN) model off-line
• Per file, compute features to predict a target compression algo

• Key findings
• The compression ratios (CRs) of simple compression algos make effective features
• A few features (4) sufficiently distinguish files in a heterogeneous dataset

• Main results
• We reduce a search space of over 100,000 algos to 1 well-performing algo for any input
• On our evaluation dataset, MLcomp reaches 97.8% of the CR achieved when exhaustively

searching our large library of compression algos
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Background: CRUSHER
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Figure 1: CRUSHER Compression and Decompression Pipeline Flow

• CRUSHER3 generates 56 × 56 × 33 = 103,488 target pipelines
• CRUSHER generates 57 × 33 = 1,881 feature pipelines

• We use sequential feature selection (SFS)4 to greedily choose the 4 best features

3Burtscher et al., “Real-Time Synthesis of Compression Algorithms for Scientific Data”.
4Ferri et al., “Comparative study of techniques for large-scale feature selection”.
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MLcomp Walkthrough: Setup

• Assumptions
• 12 heterogeneous files to compress: {f0, f1, f2, ..., f11}
• 10 CRUSHER components: {c0, c1, c2, ..., c9}

1. Split dataset
• Training: {f0, f1, f2, f3}
• Validation: {f4, f5, f6, f7}
• Testing: {f8, f9, f10, f11}

2. Generate CRUSHER pipelines
• 10 Features (length 1): {c0, c1, c2, ..., c9}
• 100 Targets (length 2): {c0c0, c0c1, c0c2, ..., c9c9}
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MLcomp Walkthrough: Training

1. Compute features and identify target pipelines
• For each training file, evaluate the CR of each

feature and target pipeline

2. Perform SFS to reduce number of features to n = 2
• Yields c2 and c7

3. Train 1NN model with reduced feature vector

Training Target
File Pipeline
f0 c2c3
f1 c4c7
f2 c6c1
f3 c2c3

Table 1: Target Pipeline Lookup
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Figure 2: 1NN Feature Space
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MLcomp Walkthrough: Prediction

1. Compute feature vector of input file f8
• Compute inverse CRs of c2 and c7 on f8

2. Find nearest neighbor (f2)

3. Compress with neighbor’s target pipeline (c6c1)

Training Target
File Pipeline
f0 c2c3
f1 c4c7
f2 c6c1
f3 c2c3

Table 1: Target Pipeline Lookup
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Evaluation Methodology

• Data is from THEMIS-B satellite5

• 27 distinct data packet types sent to Earth daily
• THEMIS-B assigns compressors according to packet type

• Dataset splits
• Training: January and February 2013 (1,406 files)
• Validation: March 2013 (775 files)
• Testing: All data packets from 2014 (8,916 files)

• Final MLcomp model stats
• 4 feature pipelines selected from 1,881 (length 2)
• 90 target pipelines identified from 103,488 (length 3)

Figure 3: THEMIS Satellite
Orbiting the Moon6

5Angelopoulos, “The THEMIS Mission”.
6https://sservi.nasa.gov/wp-content/uploads/drupal/themas1.jpg
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Results: Compression Ratio

On-board THEMIS-B compressors 1.858
In-model single best pipeline 2.032

CRUSHER single best pipeline 2.053
MLcomp predictions 2.682

In-model exhaustive search per file 2.740
CRUSHER exhaustive search per file 2.741

1 1.5 2 2.5 3
Figure 4: Geometric-mean Compression Ratio of MLcomp and Baselines

• MLcomp nearly achieves the upper bounds (exhaustive searches)
• Compressing with a single pipeline (even the best!) is suboptimal
• MLcomp surpasses THEMIS-B despite withholding the packet type label
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Results: Correlation between Packet Type and Predicted Pipeline
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Figure 5: Correlation between Packet Type and Predicted Compression Pipeline

• Discreteness exhibits MLcomp’s lack of bias towards a few pipelines
• Some packet types have similar sets of predicted pipelines

• Likely collected by the same instrument in different modes
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Results: Comparison with THEMIS-B Compressors (449)
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Figure 6: Compression Ratio of Packet Type 449 across Test Set

• Packet type 449: THEMIS-B beats MLcomp by highest factor (1.2×)
• Due to limitations of CRUSHER’s library of compressors, not MLcomp’s prediction method
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Results: Comparison with THEMIS-B Compressors (45f)
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Figure 7: Compression Ratio of Packet Type 45f across Test Set

• Packet type 45f: MLcomp beats THEMIS-B by highest factor (3.0×)
• MLcomp predicts 15 distinct pipelines (second-highest) for packet type 45f
• Adapts to heterogeneity within packet type
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Summary & Conclusion

• Simple ML approach can predict effective compression algos for heterogeneous datasets
• Using a single algorithm on all files results in poor CRs
• Exhaustively searching for the best algo per file is too slow

• Training a model offloads computation, so prediction is relatively fast
• MLcomp yields near-optimal CR on 8,916 unseen heterogeneous packets
• We hope this inspires others to explore ML to improve data compression

Further questions?
burtchell@txstate.edu
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