Characterizing the Performance of Parallel Data-Compression
Algorithms across Compilers and GPUs

Brandon Alexander Burtchell
Department of Computer Science
Texas State University
San Marcos, TX, USA
burtchell@txstate.edu

Abstract

Different compilers can generate code with notably different per-
formance characteristics—even on the same system. Today, GPU
developers have three popular options for compiling CUDA or HIP
code for GPUs. First, CUDA code can be compiled by either NVCC
or Clang for NVIDIA GPUs. Alternatively, AMD’s recently intro-
duced HIP platform makes porting from CUDA to HIP relatively
simple, enabling compilation for AMD and NVIDIA GPUs. This
study compares the performance of 107,632 data-compression algo-
rithms when compiling them with different compilers and running
them on different GPUs from NVIDIA and AMD. We find that the
relative performance of some of these codes changes significantly
depending on the compiler and hardware used. For example, Clang
tends to produce relatively slow compressors but relatively fast
decompressors compared to NVCC and HIPCC.

CCS Concepts

« Theory of computation — Data compression.

Keywords
Data compression, GPU compilers, CUDA, HIP

ACM Reference Format:

Brandon Alexander Burtchell and Martin Burtscher. 2025. Characterizing
the Performance of Parallel Data-Compression Algorithms across Compilers
and GPUs. In Workshops of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC Workshops ’25), November
16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3731599.3767369

1 Introduction

The choice of compiler can affect the performance of a program.
Typically, this is due to the optimizations the compiler applies
to the code—such as strength reduction or loop unrolling [15].
Different compilers support different sets of optimizations and
use different algorithms for important code-generation steps like
register allocation. Moreover, they may include different versions
of libraries. These issues are exacerbated for GPU code, where the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC Workshops °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1871-7/25/11

https://doi.org/10.1145/3731599.3767369

Martin Burtscher
Department of Computer Science
Texas State University
San Marcos, TX, USA
burtscher@txstate.edu

compilers, language features, and libraries are not as mature as for
CPUs. Expecting every developer to compare such low-level details
between candidate compilers to choose one is unrealistic. Hence,
with the growing prominence of GPU workloads, it is important
to conduct performance analyses to better understand how the
main compilers compare. We use 62 transformations from data-
compression algorithms for this purpose.

There are several popular options for compiling general-purpose
GPU code. CUDA [7]—-NVIDIA’s proprietary API—can be compiled
by NVIDIA’s NVCC compiler or the open-source LLVM-based Clang
compiler [5]. AMD’s HIP [8]—an open-source API for NVIDIA and
AMD GPUs—can be compiled by the HIPCC compiler. Existing
CUDA code can be easily ported to HIP via the HIPIFY utility [3],
making it important to compare the performance between the same
codes represented in CUDA and HIP.

The choice of GPU vendor can affect performance due to archi-
tectural characteristics. For example, NVIDIA has yet to release a
GPU with a warp size above 32 threads, while AMD has released
several GPUs (e.g., the Instinct generation of accelerators) with a
warp size of 64 threads. Thus, code that is able to exploit larger
warp sizes (e.g., warp-based reductions) can achieve more warp-
level parallelism on such AMD GPUs than on NVIDIA GPUs. On
the other hand, while both HIP and CUDA support system- and
device-scope atomics, only CUDA supports block-scope atomics
that merely guarantee atomicity between threads from the same
block but are, therefore, potentially faster.

|I|—> DIFF —>TCMS—>{ RLE —)IEI

Figure 1: A compression pipeline with 3 stages generated by
the LC framework (I = input, O = output)

To understand the effect of the compiler and hardware vendor
on program performance, we need a diverse set of codes that can
be measured in various contexts. For this study, we use LC [13]—
a framework that automatically generates high-speed and effec-
tive data-compression algorithms, called pipelines, for GPUs. LC
has been used to create several state-of-the-art lossless and lossy
compressors including SPspeed, SPratio, DPspeed, DPratio, and
PFPL [14, 18]. LC synthesizes pipelines by chaining data transfor-
mations called components. Each component has different algorith-
mic characteristics, such as the granularity at which it operates, the

https://orcid.org/0009-0008-6537-2266
https://orcid.org/0000-0001-7717-3354
https://doi.org/10.1145/3731599.3767369
https://doi.org/10.1145/3731599.3767369
https://doi.org/10.1145/3731599.3767369

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

transformation it performs, and its computational complexity. Fig. 1
visualizes how a compression pipeline is formed from a library of
components. The corresponding decompression pipeline performs
the inverse transformations in reverse order.

All components have a common interface such that each of them
can be given a block of input data and transform it into a block of
output data, which can then be fed into the next component. Thus,
the position of a component can affect its runtime since a preceding
component determines the size of its input. With 62 components
in its library, LC can generate 107,632 three-stage pipelines.

We investigate the performance of the 62 data transformations
in the context of these 107,632 unique lossless data-compression
algorithms when compiled by NVCC, Clang, and HIPCC. Moreover,
we evaluate the speed of the resulting codes on several NVIDIA and
AMD GPUs from different generations. Our experiments reveal that
the LC components are not individually sensitive to the choice of
compiler or GPU vendor, but we find trends between components
that may apply to other codes with similar algorithmic patterns.

This work makes the following main contributions.

o It is, as far as we know, the first study to compare CUDA
and HIP in the domain of data compression.

o It highlights interesting performance trends between com-
piled codes across several compilers and GPUs.

e It updates the LC framework for compatibility with the
NVCC, Clang, and HIPCC compilers.

The rest of the paper is structured as follows. Section 2 discusses
related work. Section 3 provides an overview of the tested compilers
and the LC framework. Section 4 explains how we updated LC for
compatibility. Section 5 outlines the experimental methodology.
Section 6 presents and analyzes the results. Section 7 provides a
summary and conclusions.

2 Related Work

Several works compare different general-purpose GPU program-
ming models. In particular, CUDA and OpenCL [27] have been
extensively compared [19, 21]. These works find that CUDA gen-
erally yields similar or slightly better performance than OpenCL.
Furthermore, Martineau et al. [23] compare OpenMP 4.5’s GPU sup-
port [26] against CUDA to identify and implement optimizations
in OpenMP when compiled with Clang. Our work differs in that
we compare the same codes in the same (CUDA) or near-identical
(HIP) programming model, compiled by different compilers and
tested on various GPUs from NVIDIA and AMD.

Some existing works directly compare NVCC and Clang when
compiling CUDA code. Wu et al. [29] introduce Clang’s CUDA
support under the name gpucc and compare Clang with NVCC to
find that Clang’s compilation is typically faster and runtime per-
formance is on par with NVCC. Balogh et al. [16] compare several
languages (CUDA, OpenACC [2], OpenMP), compilers (including
NVCC, Clang, and PGI [1, 9]), and parallelization approaches on un-
structured mesh computations. They find that Clang frequently out-
performs NVCC on CUDA code for their applications. In contrast,
our work compares a different set of compilers and programming
models and focuses on the domain of data compression.

As HIP is relatively new compared to the platforms mentioned
above, there is little existing work that measures HIP codes ported

Brandon Alexander Burtchell and Martin Burtscher

from CUDA. Kondratyuk et al. [22] port molecular dynamics appli-
cations from existing CUDA/OpenCL versions to HIP and find that
the tested HIP ports generally outperform OpenCL implementa-
tions on the same AMD GPU. Tsai et al. [28] port the GINKGO linear
algebra package [10] and find that HIP introduces only negligible
overhead (3-10% performance difference) on their benchmarks. To
the best of our knowledge, our work is the first to present a CUDA
and HIP comparison in the domain of data compression.

Azami and Burtscher [12] analyze the importance of LC compo-
nents in terms of compression ratio. They find that various stages
prefer distinct component types, and that the preferred word size
of certain components depends on the data type of the input (i.e.,
single- vs. double-precision data). This approach has inspired our
work, but we analyze the encoding and decoding throughputs of
components instead. Additionally, our work adds the dimensions
of compiler, GPU, and GPU vendor to the comparison.

3 Background

This section describes the tested GPU compilers as well as the
analyzed codes.

3.1 GPU Compilers

General-purpose GPU code targeting NVIDIA platforms is typically
written in CUDA, NVIDIA’s C++ APIL NVIDIA provides NVCC as
the de facto compiler for CUDA code. NVCC handles the compi-
lation of device (i.e., GPU) code and forwards all host (i.e., CPU)
code to g++. Notably, NVCC is a proprietary compiler. This can
presumably result in fast code, as the compiler can employ opti-
mizations specific to the proprietary design of the target hardware.
However, it can also make performance analysis of GPU codes more
difficult since aspects of the hardware and the compiler are not
publicly known. Additionally, this means that CUDA code cannot
be compiled with NVCC for hardware from other vendors.

Clang is an open-source C/C++ compiler built in tandem with
the LLVM compiler backend. Initially introduced under the name
gpucc [29], CUDA support has been available in Clang as of LLVM
version 3.9 [6]. Clang is currently the most popular open-source
alternative to NVCC. Like NVCC, Clang can only compile CUDA
codes for NVIDIA GPUs.

AMD introduced HIP as part of the Radeon Open Compute plat-
form (ROCm) [4]. HIP is a C++ runtime API and platform that en-
ables the creation of portable applications that target both NVIDIA
and AMD GPUs. The API is designed in a way to make porting
CUDA to HIP simple. In fact, almost all CUDA API functions have
a HIP counterpart, meaning many applications can be ported with
a simple find-and-replace. For example, cudaMemcpy () becomes
hipMemcpy (). HIP provides HIPIFY tools to automate this process
for developers.

For HIP, both AMD and NVIDIA targets require the HIP/ROCm
libraries, but compilation is necessarily handled differently. For
AMD GPUs, HIP code is compiled with AMD’s HIPCC—an open-
source compiler built with LLVM. For NVIDIA GPUs, HIPCC simply
invokes NVCC while including the HIP/ROCm libraries. Thus, the
only difference between NVCC-compiled CUDA code and NVCC-
compiled HIP code is which API libraries are referenced when
calling CUDA or HIP functions.

Characterizing the Performance of Parallel Data-Compression Algorithms across Compilers and GPUs

3.2 LC Framework

LC-generated data compressors split an input file into 16 kB chunks
and operate on the chunks in parallel by assigning them to different
thread blocks. The code processing each chunk is further paral-
lelized using thread, warp, and block-local primitives. The overall
activity is synchronized via a global prefix sum.

Table 1: List of LC components by category

Mutators | Shufflers | Predictors | Reducers
DBEFS_j | BIT i DIFF i CLOG i
DBESF_j TUPLk_i DIFFMS_i HCLOG_i
TCMS_i DIFENB_i RARE _i
TCNB_i RAZE_i
RLE_i
RRE_i
RZE_i

Table 1 shows the list of LC components used in this study. Most
of them are derived from common data transformations performed
in various data compressors. We categorize them into four types:
mutators, shufflers, predictors, and reducers. The first three types
leverage correlations to better expose data patterns so that the
reducers can compress more effectively. The parameters i, j, and k in
the table denote the granularity at which these components operate.
For instance, TCMS_4 operates on 4-byte words. The supported
word sizes for i are 1, 2, 4, and 8 bytes (with the exception of TUPL),
and for j they are 4 and 8. The TUPL components assume the input
to be a sequence of tuples of various sizes. The k value in the table
represents the tuple size. We tested 6 TUPL components with sizes
of 2, 4, and 8—each with their own set of word granularities.

The following subsections briefly describe the types of trans-
formations performed by these components. Table 2 summarizes
the work complexity and span of each component’s encoding and
decoding algorithm, where n is the number of words in the input
data and w is the word size.

3.2.1 Mutators. Mutators computationally transform each value
in place without compressing the data. When decoding, these com-
ponents perform the inverse transformation.

o DBEFS: Operates on IEEE-754 floating-point values. It first
de-biases the exponent and then rearranges the data fields
from sign, exponent, fraction order to (de-biased) exponent,
fraction, sign order.

e DBESF: Like DBESFS, but rearranges to (de-biased) expo-
nent, sign, fraction order.

o TCMS: Converts each value from two’s complement to mag-
nitude-sign representation.

e TCNB: Converts each value from two’s complement to base
negative 2 (a.k.a. negabinary) representation.

3.2.2 Shufflers. Shufflers rearrange the order of values but per-
form no computation or compression on them. To decode, these
components apply the rearrangement in reverse.

o BIT: Takes the most significant bit of each value in the input

and outputs them together, then it does the same with the
second bit and so on. The actual GPU implementations vary

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

slightly with the word size in order to utilize warp-level
parallelism at the larger word sizes.

e TUPLk: Assumes the data to be a sequence of k-tuples,
which it rearranges by listing all first tuple values, then
all second tuple values, etc. For example, a tuple size of k = 2
changes the sequence x1, y1, X2, y2, ... into x1, X2, ..., Y1, Y2, -...

3.2.3 Predictors. Predictors guess the next value by extrapolating
it from prior values. Then they subtract the prediction from the
actual value to output a sequence of residuals. If the predictors are
accurate, the residuals cluster around zero, making them easier to
compress by a subsequent reducer.

e DIFF: Computes the difference sequence (a.k.a. “delta modu-
lation”) by subtracting the previous value from the current
value and outputting the resulting difference. To decode,
the prefix sum of the differences is computed—yielding the
original values.

e DIFFMS and DIFFNB: Like DIFF but stores each value in
magnitude-sign format for DIFFMS or negabinary format
for DIFFNB.

3.24 Reducers. Reducers are the only components that can com-
press the data. They do so by exploiting redundancies.

e CLOG: Breaks each 16 kB chunk into 32 subchunks, deter-
mines the smallest number of leading zero bits of all values
in a subchunk, records this count, and then stores only the
remaining bits of each value. This compresses data with lead-
ing zero bits. Decoding uses the recorded leading-zero-bit
counts to recreate the values of each subchunk.

e HCLOG: Like CLOG except it first applies the TCMS trans-
formation to all values in a subchunk that yields no leading
zero bits when using CLOG.

e RLE: Performs run-length encoding. It counts how many
times a value appears in a row, then it counts how many non-
repeating values follow. Both counts are emitted followed
by a single instance of the repeating value as well as all non-
repeating values. To decode, the values are emitted according
to the encoded runs.

o RRE: Creates a bitmap where each bit specifies whether the
corresponding word in the input repeats the prior word. It
outputs the non-repeating words and a compressed version
of the bitmap that is repeatedly compressed with the same
algorithm. To decode, the bitmap is decompressed, then the
values are emitted accordingly.

e RZE: Like RRE, but the bitmap specifies whether the corre-
sponding word is a zero or not.

o RARE: Treats the upper k bits separately from the lower
bits by only applying RRE to the upper k bits and always
keeping the lower bits. It automatically picks the optimal k
value for each chunk. Decoding similarly performs the RRE
decoding procedure on only the encoded k bits.

e RAZE: Like RARE, except it applies the RZE transformation
to the upper k bits.

4 Approach

To make our experiments possible, we first had to make LC’s CUDA
implementation compatible with Clang and HIPCC as well as AMD

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Brandon Alexander Burtchell and Martin Burtscher

Table 2: Component work complexity and span in big-O notation

Mutators Shufflers Predictors Reducers
DBEFS/ESF | TCMS/NB BIT TUPL | DIFF, DIFFMS/NB | CLOG, HCLOG | RARE/ZE | RLE | RRE/ZE
g | Work n n nlog w n n n n n n
Ifl Span 1 1 log w 1 1 1 logn logn logn
g Work n n nlog w n n n n n n
A | Span 1 1 log w 1 logn 1 logn 1 logn

GPUs. Luckily, LC compiled successfully for NVIDIA GPUs by
Clang without any modifications. However, after initially convert-
ing the CUDA code to HIP using HIPIFY, we needed to update parts
of LC that could not be automatically ported. For instance, as of
HIP 6.2, some CUDA primitives like the block-scope versions of
atomic functions (e.g., atomicOr_block()) are not supported. In
this particular case, it is possible to fall back to the device-scope
version (e.g., atomicOr()) and maintain correctness at the possible
cost of some performance. We applied similar workarounds for
atomicAdd_block(), __syncwarp(), and __trap().

1| int tmp, val = ...;

2| const int lane = threadIdx.x % WS;
3

4| tmp = __shfl_up(val, 1);

5| if (lane >= 1) val += tmp;

6| tmp = __shfl_up(val, 2);

7| if (lane >= 2) val += tmp;

8| tmp = __shfl_up(val, 4);

9| if (lane >= 4) val += tmp;

10| tmp = __shfl_up(val, 8);

11| if (lane >= 8) val += tmp;

12| tmp = __shfl_up(val, 16);

13| if (lane >= 16) val += tmp;
14

15| #if defined(WS) && (WS == 64)
16| tmp = __shfl_up(val, 32);

17| if (lane >= 32) val += tmp;
18| #endif

Listing 1: CUDA/HIP prefix-sum code updated to support
both 32 and 64 threads per warp

Most notably, we had to update several parts of the code that were
written with the assumption that the warp size is 32 threads. For
example, Listing 1 shows a snippet of CUDA/HIP code that performs
a prefix sum across a warp. Each thread starts with its own value in
val, then each __shfl_up(int var, int delta)! call returns the
private value stored in var from the lane whose ID is equal to the
current lane ID minus delta. That is, __shfl_up(val, 2) returns
the value 2 lanes below the calling lane. The code before Line 15
only supports warps with 32 threads. We added a preprocessor
directive and extra code after Line 15 that is only included during
compilation if the warp size (WS) is 64 threads. Several components
such as CLOG, HCLOG, RARE, RAZE, and RLE perform similar
warp-level operations that we updated to work on AMD GPUs with
64-thread warps.

5 Experimental Methodology

To analyze the performance of each individual component, we
created 3-stage LC pipelines from the components listed in Ta-
ble 1. Since placing a non-reducer in the final stage is useless,

IThis is __shfl_up_sync(int mask, int var, int delta) in CUDA.

we limit the last stage to reducers only. Thus, we end up with
62 X 62 X 28 = 107,632 generated pipelines.

We record the encoding and decoding throughputs (uncom-
pressed bytes processed per second) for all pipelines on all inputs—
repeating this process for each tested compiler on each tested GPU.
To analyze the resulting throughputs in terms of individual com-
ponents, we separately average the throughputs across several
dimensions, namely: GPU, component word size, component type,
and component.

Table 3: SP dataset

Filename Size (MB)
msg_bt 133.2
msg_lu 97.1
msg_sp 145.1
msg_sppm 139.5
msg_sweep3d 62.9
num_brain 70.9
num_comet 53.7
num_control 79.8
num_plasma 17.5
obs_error 31.1
obs_info 9.5
obs_spitzer 99.1
obs_temp 20.0

We used the SP dataset [17] as inputs, which are summarized in
Table 3. This dataset includes 13 single-precision floating-point files
from several domains (e.g., weather observations, simulation results,
MPI messages). For each input, we run each LC pipeline three times
and compute the throughput based on the median runtime. Then,
each pipeline’s throughput is averaged across all 13 inputs using
the geometric mean.

Table 4: NVIDIA GPU specifications

TITANV | 3080 Ti | 4090
Clock Freq. (MHz) 1075 1755 | 2625
SMs 24 80 128
Max Threads per SM 2048 1536 | 1536
Warp Size 32 32 32
Memory (GB) 12 12 24
Compute Capability 7.0 8.6 8.9

We perform our experiments on the 3 NVIDIA GPUs listed in
Table 4 and the 2 AMD GPUs listed in Table 5. Some architectural
items differ between vendors. Namely, NVIDIA’s streaming mul-
tiprocessors (SMs) ¥ AMD’s compute units (CUs) and NVIDIA’s

Characterizing the Performance of Parallel Data-Compression Algorithms across Compilers and GPUs

Table 5: AMD GPU specifications

MI100 | RX 7900 XTX
Clock Freq. (MHz) 1502 2482
CUs 120 96
Max Threads per CU 2560 1024
Warp Size 64 32
Memory (GB) 32 24
Target Processor gfx908 gfx1100

compute capability ¥ AMD’s target processor. Note that the AMD
RX 7900 XTX is based on the RDNA3 architecture, which combines
pairs of CUs into workgroup processors in which all threads can
cooperate.

The system with the TITAN V and RTX 4090 contains an AMD
Ryzen Threadripper 2950X CPU with 48 GB of memory. The system
with the RTX 3080 Ti contains an Intel Xeon Gold 6226R CPU with
64 GB of memory. Both systems run Fedora 41 and NVIDIA GPU
driver 550.142. The system with the MI100 contains an AMD EPYC
7V13 CPU with 512 GB of memory—running Ubuntu 20.04 and
AMD GPU driver 5.16.9.22.20. The system with the RX 7900 XTX
contains an AMD Ryzen Threadripper 3970X CPU with 256 GB of
memory—running Ubuntu 24.04 and AMD GPU driver 6.8.5.

Note that each tested input fully occupies all tested GPUs due
to how LC assigns a 16 kB chunk of data to each 512-thread block.
For instance, the RTX 4090 has 128 SMs with 1536 threads per SM
(i.e., 3 blocks per SM). Therefore, it takes 6 MB of input data to
fully occupy this GPU. Similarly, it takes 9.375 MB to fully occupy
the AMD MI100. These are the tested GPUs with the most active
threads for both vendors, meaning all tested inputs (the smallest
being “obs_info” at 9.5 MB) fully occupy the tested GPUs. Larger
files take up more global memory, but the presented throughputs
normalize the effect of input size.

All NVIDIA systems use NVCC version 12.6, HIPCC version 6.2,
and Clang 18.1. For the AMD systems, the system with the MI100
uses HIP version 6.4 and the system with the RX 7900 XTX uses
HIP version 6.2. All compilers target C++17. We compiled separate
executables for each GPU’s compute capability/target processor.
All results except those in Section 6.5 present throughputs from
executables compiled with the -03 optimization flag. Section 6.5
presents speedups over using the -01 flag.

6 Results

The following subsections present the throughputs across compilers
when using various GPUs, component word sizes, component types,
components, and optimization levels. To show the distribution of
throughputs across all pipelines within a particular parameter, we
use boxen plots (a.k.a. letter-value plots) [20], which recursively
halve the distribution around the median and present each quantile.
That is, the widest box represents the middle 50% of values and the
next two narrower boxes above and below together contain the
next 25% of values and so on. The median is marked within the
widest box as a black line. Outliers are set to a fixed rate of 0.7% and
are shown as gray circles. The figures in Sections 6.1 through 6.4
present throughput (higher is better) on the y-axis in terms of GB/s,
with boxes grouped by the parameter of interest along the x-axis.

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Each box is color-coded according to the compiler used. With the
exception of the figures in Sections 6.1 and 6.5, all figures show
results from the fastest tested NVIDIA/AMD GPU. We observed
similar performance patterns across all GPUs—relative to each
GPU’s compute power. Since each platform supports a different set
of compilers, we separate all subsequent figures into a subfigure
for NVIDIA and another for AMD. The purpose of this work is not
to compare the performance of the tested GPUs but to characterize
relative performance trends across several parameters. Therefore,
the NVIDIA and AMD subfigures use different y-axis scales.

6.1 GPU Comparison

Fig. 2 summarizes the encoding throughputs of all pipelines for each
compiler on each tested GPU. For both vendors, the more powerful
and newer GPUs naturally have higher overall performance, hence
the staircase shape in each subgraph (i.e., TITAN V to 4090 and
M100 to 7900 XTX). Overall, each encoding throughput distribution
is quite symmetric. That is, the “head” and “tail” of each box have
similar lengths and the median is well-centered.

I NVCC [Clang [HIPCC
400 150

I HIPCC

350 o
g G
£ 300 8 0
€ 250 2
2 200 2
))
e § ? -
£ 100 £
[[
° ?%% %
0 0
TITAN V RTX 3080 Ti RTX 4090 MI100 RX 7900 XTX
GPU GPU
(a) NVIDIA (b) AMD

Figure 2: Encoding throughputs by GPU

There are some interesting trends between the compilers on the
NVIDIA platform (Fig. 2a). NVCC and HIPCC’s distributions are
always close. Recall that the only difference between NVCC and
HIPCC targeting NVIDIA GPUs is the included libraries. These
results suggest that the functions LC uses from the CUDA and
HIP libraries have similar performance when compiled for NVIDIA
GPUs. In contrast, Clang’s encoding throughputs are consistently
lower than those from NVCC and HIPCC.

Fig. 3 shows the decoding throughputs, which are generally
higher than the corresponding encoding throughputs. This is ex-
pected since the encoding version of each component tends to do
more work than its decoding counterpart. We observe this for each
compiler, GPU, and vendor.

Interestingly, the shape of the distributions also differs between
encoding and decoding. Specifically, the decoding throughput dis-
tributions are not symmetric but skew towards higher throughputs,
indicating that decoding is consistently very fast for the majority
of LC pipelines. Regarding the compilers for NVIDIA GPUs, NVCC
and HIPCC are once again close in behavior like they were for
encoding. However, unlike the encoding throughputs, Clang’s de-
coding throughputs are consistently higher than those of NVCC

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

I NVCC 3 Clang B HIPCC I HIPCC
450 200
400
g 350 g 150
G 300]
s 250 =
2 2 100
£ 200 2
B B
3 150 3
£ 100 £ 50
» TTT
0 0
TITAN V RTX 3080 Ti RTX 4090 MI100 RX 7900 XTX
GPU GPU
(a) NVIDIA (b) AMD

Figure 3: Decoding throughputs by GPU

and HIPCC. This seems to be a general trend that holds for other pa-
rameters as discussed below. Therefore, the performance difference
must stem from aspects of the LC framework that are shared among
all pipelines yet only occur in the encoder or decoder. For instance,
the encoder uses Merrill and Garland’s decoupled look-back tech-
nique [24] to propagate the cumulative size of prior compressed
chunks to the next thread block so it knows where to write its
output. In contrast, the decoder computes a prefix sum in each
thread block to determine the chunk starting positions. It appears
that pipeline-independent framework-level operations like these
are where Clang generates consistently faster/slower code than
NVCC and HIPCC. This is further explored in Section 6.5.

6.2 Word-Size Comparison

This subsection describes the performance characteristics of LC
pipelines where all constituent components are of the same word
size. For example, “BIT_4 DIFF_4 RRE_4” would be counted among
the pipelines with 4-byte components. Mixed word-size pipelines
are omitted from these results to highlight the effect of the word
size. This yields 1,792 1-byte pipelines, 1,575 2-byte pipelines, 1,792
4-byte pipelines, and 1,575 8-byte pipelines. Fig. 4 shows the results
for encoding on the fastest tested NVIDIA and AMD GPUs.

I NVCC 3 Clang Il HIPCC I HIPCC
400 150
350 o 2 o _
Z300 ¢ 2
€ 250 © 100
é 200 @ é_
o =
H 150 3 s0
‘ﬁ‘ 100 ,‘E
50
0 0
1 2 4 8 1 2 4 8
Word Size (bytes) Word Size (bytes)
(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX

Figure 4: Encoding throughputs by wordsize

Encoding throughput generally increases with the word size.
Interestingly, despite the fact that all tested GPUs have 32-bit archi-
tectures, the 4-byte components do not deliver the highest through-
puts. Since the 8-byte components only process half as many words

Brandon Alexander Burtchell and Martin Burtscher

as the 4-byte components on a given input, they still achieve a
performance benefit. However, the throughput increase from 4- to
8-byte components is lower than from 2- to 4-byte components due
to the architectural word size.

Fig. 5 compares the decoding throughputs for different word
sizes. The throughput distributions are close (i.e., the medians are
within 50 GB/s of each other and have similarly long tails) for word
sizes of 1, 2, and 4 bytes, whereas they trend highest for 8 bytes.
This is evident on the NVIDIA and AMD GPUs.

I NVCC [Clang [HIPCC I HIPCC

50
! 150
250
200 —
150
100 50

1 2 4 8 1 2 4 8
Word Size (bytes) Word Size (bytes)

B/s)

w s &

& &

o o
N
S
8

G
w
=3
=3

S
Throughput (GB/s)
"

o
S)

Throughput (

(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX

Figure 5: Decoding throughputs by wordsize

Again, we see that the pipelines with 4-byte word sizes are not
necessarily the fastest despite matching the architectural word
size. Furthermore, for both vendors and all compilers, the median
throughputs are higher for a word size of 2 bytes than for 1 or 4
bytes. This is most evident in Fig. 5b, where the 2-byte word size
achieves the highest median decoding throughput on the AMD
GPU. This is a side effect of a phenomenon explored in Section 6.4,
where reducers (notably RLE) in Stage 1 that do not match the word
size of the data (i.e., 4-byte floats) fail to compress the data and
thus require little work during decoding. In contrast, a reducer that
matches the input’s word size tends to compress and, therefore,
must decompress during decoding—resulting in lower decoding
throughput.

For both encoding and decoding, we see that the choice of com-
piler does not discriminate between word sizes. All compilers ex-
hibit the same relative trends.

6.3 Component-Type Comparison

This subsection presents the performance characteristics of 3-stage
pipelines where the first two stages contain components that are of
the same type. For example, “TCMS_4 DBEFS_1 HCLOG_2” would
be counted among the pipelines with mutators in the first two stages.
Recall that the last stage must always be a reducer. Accordingly,
there are 4,032 mutator pipelines, 2,800 shuffler pipelines, 4,032
predictor pipelines, and 21,952 reducer pipelines that we evaluated.

Fig. 6 shows the encoding throughputs. Here, the component
types yield similar throughputs except for the reducers. This is
expected since reducers tend to perform the most complex transfor-
mations and, therefore, more work during encoding than the other
components. They typically also necessitate more synchronization
in their parallel implementations.

Characterizing the Performance of Parallel Data-Compression Algorithms across Compilers and GPUs

EEN NVCC [Clang EEE HIPCC B HIPCC
400 150
350
@ ? ? @
2 300 2
€ 250 © 100
z z
Li 200 La
5 &
g 150 E
ﬁ 100 f
50 °
0 0
&° "o o & O e
& & N RO g
W o o o W g o8 e

Component Type Component Type

(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX

Figure 6: Encoding throughputs by component type

BN NVCC [Clang EEE HIPCC B HIPCC
450 200
400
© 350 o
o o 150
© 300 Q
5 250 5
3 3 100
< 200 <
=) =)
3 150 3
£ 100 £ 50
50
0 0
o e (o o O e (o e
"’A‘ NG \)C Nea &(\C \3<’
W o e o W g0 o8 e

Component Type Component Type

(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX

Figure 7: Decoding throughputs by component type

Fig. 7 presents the corresponding decoding throughputs, where
the reducers are no longer the slowest. Rather, the pipelines with
predictors tend to yield the lowest throughputs because they require
expensive prefix sums. Interestingly, the throughput distribution
of the pipelines with mutators in the first two stages is highly
skewed towards the top—so much so that the median lines are
barely visible. This is due to the mutators’ embarrassingly parallel
implementations in combination with regular memory accesses. In
contrast, the shufflers exhibit irregular memory accesses, and the
predictors and reducers perform complex operations that are not
embarrassingly parallel.

Once again, the choice of compiler does not discriminate be-
tween component type. Moreover, we again observe the overall
trends on NVIDIA GPUs where NVCC and HIPCC tend to match
performance and Clang is consistently slower for encoding but
faster for decoding.

6.4 Component Comparison

The following figures show results for pinning a particular compo-
nent to a particular pipeline stage. For example, in Fig. 8, the group
of boxes for BIT refers to all pipelines where BIT_1,BIT_2,BIT 4, or
BIT_8 are in Stage 1. The other stages can be any other component,
with the last stage limited to reducers only. With these constraints,
for Stage 1, there are 6,944 pipelines for each component except
DBEFS and DBESF, which each have 3,472 pipelines, and TUPL,

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

which has 10,416 pipelines. The components are alphabetically
ordered along the x-axis.

Fig. 8 shows encoding throughputs for pipelines with a given
component pinned to Stage 1. Like with the previous figures, the
encoding throughput distributions are symmetric. Furthermore,
they are close for many of the components. However, on all GPUs,
pipelines with RARE and RAZE in the first stage have significantly
lower throughputs than the other components—due to their adap-
tive algorithm performing more work than the other reducers.
Additionally, the HCLOG components also have markedly lower
throughputs due to their relatively complex operation, especially
on the 7900 XTX. On the MI100, our other AMD GPU, the HCLOG
behavior is closer to that on the NVIDIA GPUs (results not shown).

Fig. 9 shows the corresponding decoding throughputs when a
component is pinned to Stage 1. We observe that CLOG, HCLOG,
RRE, and RZE (reducers) tend to have the highest median through-
puts. Like the decoding throughputs in previous subsections, almost
all of the distributions trend upwards. However, when grouped
by component, we see that some components do not follow this
pattern. Namely, the decoding versions of BIT and RLE have a
wide spread of throughputs for the middle 50% (largest box). The
median throughput is also more centered than for the other com-
ponents. This shows that pipelines with RLE or BIT components in
the first stage vary more significantly in overall throughput than
pipelines with another component in the first stage. To verify this,
Figs. 10 and 11 present detailed views of the Stage 1 results for each
word size of the BIT and RLE components, respectively.

Indeed, the decoding throughputs vary significantly between
word sizes for BIT and RLE. For the BIT components (Fig. 10), the
BIT_1 and BIT_2 distributions skew towards higher throughputs
(more so for BIT_2) much like the other decoding components,
whereas the BIT 4 and BIT_8 distributions are symmetric. This is
primarily due to the very different implementations of BIT_1/BIT_2
on the one hand and BIT_4/BIT_8 on the other hand. In particular,
BIT_1 and BIT_2 perform bitwise operations without synchroniza-
tion whereas BIT_4 and BIT_8 perform __shfl_xor() operations
(which implicitly synchronize across warps). We also observe these
trends for encoding pipelines with BIT in Stage 1, though with less
severity and more symmetric distributions.

The decoding throughputs for pipelines with an RLE component
in the first stage (Fig. 11) differ even more. Unlike with BIT, the
RLE components have the same implementation for each word
size, so the reason for these discrepancies is different. During LC
encoding, if a component expands a chunk of data, LC will ignore
the expanded output and just copy the original input to the output.
Thus, during decoding, LC will not have to run the decoder of that
component on that chunk—saving work. Recall that our dataset
consists of single-precision (i.e., 4-byte float) inputs. Therefore, it is
much more likely for an RLE component in Stage 1 to encounter a
“run” of matching 4-byte values (necessary for RLE compression)
than a run of matching values at any of the other word sizes. Thus,
pipelines with RLE_1, RLE_2, or RLE_8 in Stage 1 tend to have high
decoding throughputs because, for these inputs, they typically do
not have to perform their decoding procedure. In contrast, RLE_4
tends to be slower because it must perform work to decompress.

We omit the Stage 2 results since the trends echo Stage 1 with
the following minor exceptions. Mainly, we see that the decoding

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Brandon Alexander Burtchell and Martin Burtscher

BEN \NVCC [Clang EEE HIPCC = HIPCC
400 150
7 350 .
@ 300 @
[C] [C)
< 250 < 100
2 200 2
= <
2 150 g s0
2 100 2
£ so0 -] =} o o o) 6 o o o o ° S
0 0
(= [0} " w %) o w o w w w w w %) @ & E QYL VoL oWwWwwww oo
= g 8§ & § §£ 5 g & 2 = & 2 5 5 2 SSEfEIs5g3zFESSE R
o e a a I 668586 I
Component Component
(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX
Figure 8: Encoding throughputs by component in Stage 1
BN NVCC [Clang EEE HIPCC = HIPCC
450 200
2 350 z
@ @ 150
< 300]
5 250 5
£ 200 2100
2 100 00 © s0
£ 50 8 8 8 o (S
0 0
=) 0 w 0 o w 10} w w w w w 0) — EF O VWL Vv ow O Wwwww w oo
= & o z = % & z
= 3 & £ &£ £ 5 3 &8 8 =T ¢ ®F p 5 @ "gEfEIcSgzzTEESER
o o a & I 6 o03a I
Component Component
(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX
Figure 9: Decoding throughputs by component in Stage 1
BN NVCC B3 Clang BEE HIPCC = HIPCC EEm N\VCC =3 Clang EEE HIPCC = HIPCC
450 200 450 200
400 400
2 350 2150 2350 150
G 300 [G 300 g6g o
c} ©) 9 S Qo
5 250 o = 250 z
2 3 100 2 2 2100
£ 200 £ £ 200 <
3 150 3 3 150 838 3 8
£ 100 £ 50 £ 100 'I"I-'i’ £ 50 T
50 88 8 50 o ° °
0 0 0 0
hS 1 5 ® L S R S
o« o« o« 2 7 o oD 2 af’ IRX P> IR At at? qel et
BIT Component BIT Component RLE Component RLE Component
(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX (a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX

Figure 10: Decoding throughputs of pipelines with a BIT
component in Stage 1

distributions are more uniform for all components than they are
for Stage 1. In particular, RLE no longer exhibits the wide 50% box
like it did in Stage 1. Accordingly, pipelines with RLE in Stage 2
have a higher median throughput than pipelines with RLE pinned
to Stage 1 (approximately a 100 GB/s improvement). This is because
RLE components in Stage 2 receive transformed data from the
preceding component in Stage 1. This transformed data is more
likely to be similarly compressible by RLE components of different
word sizes—alleviating the decoding throughput discrepancies.

Figure 11: Decoding throughputs of pipelines with an RLE
component in Stage 1

Fig. 12 shows encoding throughputs for pipelines with a com-
ponent pinned to Stage 3. Recall that Stage 3 can only contain a
reducer component, so each distribution represents 15,376 pipelines.
Like with stages 1 and 2, RAZE and RARE are the slowest encoding
components. HCLOG is again relatively slower on the AMD GPU
than on the NVIDIA GPU.

Lastly, Fig. 13 shows decoding results for pinning a component
to Stage 3. Overall, we see similar throughput distributions as with
the previous stages. Specifically, decoding pipelines with RLE in
Stage 3 have the widest distribution of throughputs like they did in

Characterizing the Performance of Parallel Data-Compression Algorithms across Compilers and GPUs

EEm N\VCC [@3 Clang B HIPCC HIPCC

A

w w

IS
S
3

150

|
100
50

w

NoWw oW
o o u
o & o

Throughput (GB/s)
[
& o
3 3

Throughput (GB/s)

[
o °©

ZE

(U] Q [UING) W oW ow ow
88 8§ 2 8¢ gy
I I
Component Component
(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX

Figure 12: Encoding throughputs by component in Stage 3

EEN NVCC [Clang HEE HIPCC B HIPCC
450 200
400
g 350 g 150
[} 300 [©}
5 250 5
f::’; é 100
£ 200 =4
3 150 3
i€ 100 £ 50
50
0 0
0 o w w w w w OO W Wwwww
s ¢ ¢ § 2 £ &8 SSENZED
o [} O L x
T I
Component Component
(a) NVIDIA RTX 4090 (b) AMD RX 7900 XTX

Figure 13: Decoding throughputs by component in Stage 3

stages 1 and 2. Comparing encoding and decoding, there is again
more variability in throughputs for encoding than decoding.

These per-stage results largely reflect the trends seen in the
component type analysis in Section 6.3. However, these more fine-
grained analyses reveal trends within each component type: mainly
that the reducers show the most variability in throughputs across
encoding and decoding. Overall, the results maintain that the effect
of the chosen compiler is not discriminatory for the various char-
acteristics of the components in the LC framework under a variety
of pipeline conditions.

6.5 Optimization-Level Comparison

The previous subsections present results from executables com-
piled with the -03 optimization flag. To investigate the source of
the performance discrepancies between Clang and the other com-
pilers, we also evaluated the effect of the compiler optimization
flag on overall performance. Fig. 14 shows the distribution of each
pipeline’s encoding speedups from -01 to -03 by GPU. Speedups
higher than 1.0 mean that -03 yields a performance increase.
Most pipelines exhibit negligible speedups/slowdowns between
optimization flags. The performance on the AMD GPUs in particular
is quite stable. However, on all NVIDIA GPUs, Clang’s encoding
throughput consistently tends to decrease when going from -01 to
-03. Clearly, for these codes, the extra -03 compiler optimizations
in Clang hurt performance for most encoders. Still, the full -01

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

BB NVCC [Clang EEE HIPCC B HIPCC
1.50 8 B 8 1.50
(e}
o 8
1.25 o o 1.25
s 3 s
§ 100 '§' § 8 1.00
2 a
%) [
0.75 8 0.75
o o
0.50 ~ o 0.50
TITAN V RTX 3080 Ti RTX 4090 MI100 RX 7900 XTX
GPU GPU
(a) NVIDIA (b) AMD

Figure 14: Encoding speedups from -01 to -03 by GPU

results (not shown) maintain that Clang is consistently slower for
encoding than the other compilers, suggesting that the choice of
optimization flag is not the sole cause for the performance disparity.
Fig. 15 shows the corresponding decoding speedups. Once again,
HIPCC’s optimizations tend to have a negligible effect on AMD
GPUs. The same is true for NVCC and HIPCC on NVIDIA GPUs.
However, Clang’s decoding performance noticeably improves from
-01 to -03, but the speedup (less than 10%) does not fully account for
the performance discrepancies observed in previous subsections.

BN NVCC [0 Clang EEE HIPCC BN HIPCC
1.50 1.50
o
1.25 -- o 1.25
a Q o
3 =
¢ 1.00 -2- -% % ~§— ¢ 1.00
Q Q
2] 8 wn
0.75 o o 8 0.75
o
o
0.50 0.50
TITAN V RTX 3080 Ti RTX 4090 MIZ00 RX 7900 XTX
GPU GPU
(a) NVIDIA (b) AMD

Figure 15: Decoding speedups from -01 to -03 by GPU

We conclude that the performance differences between Clang
and the other compilers is not only due to compiler optimizations.
Other underlying compiler attributes like the register allocation
algorithm must be contributing.

7 Summary and Conclusions

This work investigates the performance differences when the same
GPU codes are compiled by different compilers for different target
GPUs. We use the LC framework, with a library of 62 algorith-
mic components, to synthesize 107,632 unique three-stage lossless
compression pipelines for performance evaluation. Through these
experiments, we arrive at a number of observations regarding the
tested GPU compilers and the measured algorithmic components.
First, there is a negligible performance difference between codes
compiled by NVCC or HIPCC for NVIDIA GPUs, suggesting that
NVCC compiles the CUDA and HIP library functions into similarly-
performing code. In contrast, relative to the other compilers, Clang

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

is consistently slower for encoding and consistently faster for de-
coding. Regarding GPU vendors, there are few major discrepancies
in relative performance between NVIDIA and AMD GPUs. Further-
more, GPUs from the same vendor demonstrate analogous perfor-
mance characteristics across generations (relative to their compute
power). Overall, the choice of compiler and GPU does not discrimi-
nate between the word size, component type, or algorithm of an LC
component. Nonetheless, there are several interesting performance
trends. For example, a larger word size tends to lead to better perfor-
mance (except for BIT and RLE components). Generally, reducers
show the most variability in throughput for encoding and decoding
due to their data-dependent behavior and compressibility.

Although the generated pipelines are made of components shar-
ing algorithmic steps with other compressors, our findings may
only apply to these LC algorithms. Thus, other compressors may be
worth studying as well. We expect the relative findings to hold for
emerging technologies like NUMA-aware multi-socket GPUs [25]
or multi-chip GPUs [11] as long as the shared-memory size of
each SM does not significantly decrease, which is unlikely as it
has been increasing in recent GPU generations. This is because LC
loads entire chunks of data into shared memory before performing
any computation. Since this load is performed only once, NUMA
latencies would not incur a significant penalty.

We recommend LC users be mindful of the component word size
and its relation to the word size of the input. In performance-critical
contexts, it may be worth compiling the encoder using NVCC or
HIPCC and the decoder using Clang to maximize throughput since
LC maintains correctness independently of the used compiler and
GPU vendor. For codes in any domain, we recommend developers
try both NVCC and Clang for their CUDA applications since doing
so requires little to no code changes and can substantially affect
performance. Further, we recommend porting to HIP to enable
NVIDIA/AMD compatibility since this is relatively easy and tends
to yield nearly identical performance to CUDA compiled by NVCC
on NVIDIA GPUs and close relative performance on AMD GPUs.

Acknowledgments

This work has been supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Research (ASCR),
under contract DE-SC0022223.

References

[1] [n.d.]. NVIDIA HPC SDK. Retrieved August 22, 2025 from https://developer.
nvidia.com/hpc-sdk/

[2] [n.d.]. OpenACC. Retrieved August 22, 2025 from https://www.openacc.org/

[3] [n.d.]. ROCm/HIPIFY. Retrieved August 22, 2025 from https://github.com/
ROCm/HIPIFY

[4] [n.d.]. AMD ROCm documentation — ROCm Documentation. Retrieved August
22, 2025 from https://rocm.docs.amd.com/en/latest/

[5] [n.d.]. Clang C Language Family Frontend for LLVM. Retrieved August 22, 2025
from https://clang.llvm.org/

[6] [n.d.]. Compiling CUDA with clang. Retrieved August 22, 2025 from https:
//Mvm.org/docs/CompileCudaWithLLVM.html

[7] [n.d.]. CUDA C++ Programming Guide. Retrieved August 22, 2025 from
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[8] [n.d.]. HIP Documentation. Retrieved August 22, 2025 from https://rocm.docs.
amd.com/projects/HIP/en/latest/index.html

[9] [n.d.]. PGI Compiler User’s Guide. Retrieved August 22, 2025 from https:

//docs.nvidia.com/hpc-sdk/pgi-compilers/19.10/x86/pgi-user-guide/index.htm

Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Gobel, Thomas Griitzmacher,

Pratik Nayak, Tobias Ribizel, Yuhsiang Mike Tsai, and Enrique S. Quintana-

Orti. 2022. Ginkgo: A Modern Linear Operator Algebra Framework for High

=
=2

Brandon Alexander Burtchell and Martin Burtscher

Performance Computing. ACM Trans. Math. Softw. 48, 1 (Feb. 2022), 2:1-2:33.
doi:10.1145/3480935
Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi,
Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans. 2017. MCM-GPU:
Multi-Chip-Module GPUs for Continued Performance Scalability. In Proceedings
of the 44th Annual International Symposium on Computer Architecture. ACM,
Toronto ON Canada, 320-332. doi:10.1145/3079856.3080231
Noushin Azami and Martin Burtscher. 2025. Identifying Important Data Trans-
formations for Synthesizing Effective Lossless Compressors. In Proceedings of
the 2025 IEEE International Symposium on Performance Analysis of Systems and
Software. doi:10.1109/ISPASS64960.2025.00034
Noushin Azami, Alex Fallin, Brandon Burtchell, Andrew Rodriguez, Benila Jerald,
Yiqian Liu, Anju Mongandampulath Akathoott, and Martin Burtscher. [n.d.]. LC
Git Repository. https://github.com/burtscher/LC-framework
Noushin Azami, Alex Fallin, and Martin Burtscher. 2025. Efficient Lossless
Compression of Scientific Floating-Point Data on CPUs and GPUs. In Proceedings
of the 30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (Rotterdam, Netherlands) (ASPLOS
’25). Association for Computing Machinery, New York, NY, USA, 395-409. doi:10.
1145/3669940.3707280
David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler transfor-
mations for high-performance computing. ACM Comput. Surv. 26, 4 (Dec. 1994),
345-420. doi:10.1145/197405.197406
G. D. Balogh, I. Z. Reguly, and G. R. Mudalige. 2018. Comparison of Parallelisation
Approaches, Languages, and Compilers for Unstructured Mesh Algorithms on
GPUs. In High Performance Computing Systems. Performance Modeling, Bench-
marking, and Simulation. Springer, Cham, 22-43. doi:10.1007/978-3-319-72971-
8.2
Martin Burtscher and Paruj Ratanaworabhan. 2007. High Throughput Compres-
sion of Double-Precision Floating-Point Data. In 2007 Data Compression Confer-
ence (DCC’07). IEEE, Snowbird, UT, USA, 293-302. doi:10.1109/DCC.2007.44
Alex Fallin, Noushin Azami, Sheng Di, Franck Cappello, and Martin Burtscher.
2025. Fast and Effective Lossy Compression on GPUs and CPUs with Guaranteed
Error Bounds. In Proceedings of the 39th IEEE International Parallel and Distributed
Processing Symposium. doi:10.1109/IPDPS64566.2025.00083
Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A Comprehensive
Performance Comparison of CUDA and OpenCL. In 2011 International Conference
on Parallel Processing. 216-225. doi:10.1109/ICPP.2011.45
Heike Hofmann, Wickham , Hadley, , and Karen Kafadar. 2017. Letter-Value
Plots: Boxplots for Large Data. Journal of Computational and Graphical Statistics
26, 3 (July 2017), 469-477. doi:10.1080/10618600.2017.1305277
Kamran Karimi, Neil G. Dickson, and Firas Hamze. 2011. A Performance Com-
parison of CUDA and OpenCL. doi:10.48550/arXiv.1005.2581
Nikolay Kondratyuk, Vsevolod Nikolskiy, Daniil Pavlov, and Vladimir Stegailov.
2021. GPU-accelerated molecular dynamics: State-of-art software performance
and porting from Nvidia CUDA to AMD HIP. The International Journal of High
Performance Computing Applications 35, 4 (July 2021), 312-324. doi:10.1177/
10943420211008288
Matt Martineau, Simon McIntosh-Smith, Carlo Bertolli, Arpith C. Jacob, Samuel F.
Antao, Alexandre Eichenberger, Gheorghe-Teodor Bercea, Tong Chen, Tian Jin,
Kevin O’Brien, Georgios Rokos, Hyojin Sung, and Zehra Sura. 2016. Performance
Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support. In 2016 7th
International Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS). 54-64. doi:10.1109/PMBS.2016.011
[24] Duane Merrill and Michael Garland. 2016. Single-pass Parallel Pre-
fix Scan with Decoupled Look-back. Technical Report NVR-2016-002.
NVIDIA. https://research.nvidia.com/publication/2016-03_single-pass-parallel-
prefix-scan-decoupled-look-back
Ugljesa Milic, Oreste Villa, Evgeny Bolotin, Akhil Arunkumar, Eiman Ebrahimi,
Aamer Jaleel, Alex Ramirez, and David Nellans. 2017. Beyond the socket: NUMA-
aware GPUs. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, Cambridge Massachusetts, 123-135. doi:10.1145/
3123939.3124534
[26] OpenMP Architecture Review Board. 2015. OpenMP 4.5 Specification. https:
//www.openmp.org/wp-content/uploads/openmp-4.5.pdf
[27] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems. Computing in Science
& Engineering 12, 3 (May 2010), 66-73. doi:10.1109/MCSE.2010.69
Yuhsiang M. Tsai, Terry Cojean, Tobias Ribizel, and Hartwig Anzt. 2021. Preparing
Ginkgo for AMD GPUs - A Testimonial on Porting CUDA Code to HIP. In Euro-
Par 2020: Parallel Processing Workshops. Springer, Cham, 109-121. doi:10.1007/978-
3-030-71593-9_9
Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques
Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert Hundt. 2016.
gpucc: an open-source GPGPU compiler. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization (CGO ’16). Association for Com-
puting Machinery, New York, NY, USA, 105-116. doi:10.1145/2854038.2854041

[11

[12

=
&

[14

[15

[16

(17

[18

[19

[20

)
=

[22

[23

[25

[28

[29

https://developer.nvidia.com/hpc-sdk/
https://developer.nvidia.com/hpc-sdk/
https://www.openacc.org/
https://github.com/ROCm/HIPIFY
https://github.com/ROCm/HIPIFY
https://rocm.docs.amd.com/en/latest/
https://clang.llvm.org/
https://llvm.org/docs/CompileCudaWithLLVM.html
https://llvm.org/docs/CompileCudaWithLLVM.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://docs.nvidia.com/hpc-sdk/pgi-compilers/19.10/x86/pgi-user-guide/index.htm
https://docs.nvidia.com/hpc-sdk/pgi-compilers/19.10/x86/pgi-user-guide/index.htm
https://doi.org/10.1145/3480935
https://doi.org/10.1145/3079856.3080231
https://doi.org/10.1109/ISPASS64960.2025.00034
https://github.com/burtscher/LC-framework
https://doi.org/10.1145/3669940.3707280
https://doi.org/10.1145/3669940.3707280
https://doi.org/10.1145/197405.197406
https://doi.org/10.1007/978-3-319-72971-8_2
https://doi.org/10.1007/978-3-319-72971-8_2
https://doi.org/10.1109/DCC.2007.44
https://doi.org/10.1109/IPDPS64566.2025.00083
https://doi.org/10.1109/ICPP.2011.45
https://doi.org/10.1080/10618600.2017.1305277
https://doi.org/10.48550/arXiv.1005.2581
https://doi.org/10.1177/10943420211008288
https://doi.org/10.1177/10943420211008288
https://doi.org/10.1109/PMBS.2016.011
https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back
https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back
https://doi.org/10.1145/3123939.3124534
https://doi.org/10.1145/3123939.3124534
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1007/978-3-030-71593-9_9
https://doi.org/10.1007/978-3-030-71593-9_9
https://doi.org/10.1145/2854038.2854041

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 GPU Compilers
	3.2 LC Framework

	4 Approach
	5 Experimental Methodology
	6 Results
	6.1 GPU Comparison
	6.2 Word-Size Comparison
	6.3 Component-Type Comparison
	6.4 Component Comparison
	6.5 Optimization-Level Comparison

	7 Summary and Conclusions
	Acknowledgments
	References

