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Abstract

Floating-point data is typically compressed at strict error bounds
to reduce storage cost while facilitating scientific analyses. Unfor-
tunately, this tends to yield large compressed files. In some cases,
however, a user might not need the data at a high fidelity. Progres-
sive compression addresses this issue by refactoring the data into a
hierarchical series of increasing fidelity, allowing users to down-
load the data at an initial fidelity and subsequently retrieve higher
fidelities. This paper studies a resolution-based progressive com-
pression approach that achieves competitive compression ratios
against traditional compression methods. Furthermore, it studies
how the progression of resolution affects the quality of the data.
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1 Introduction

Scientific data is often compressed to reduce storage space. Still, the
compressed data can be quite large, leading to long download times.
In some cases, a user might not initially need a high-fidelity version
of the data but still requires access to a lossless or error-bounded
lossy version as a contingency. Progressive compression addresses
this situation. It is a compression technique that refactors an input
into a hierarchical series of progressively more lossy representa-
tions. Thus, a user could initially download a file at a low fidelity
and then progressively download more of the fidelity in the future if
needed. Importantly, an effective progressive compression method
does not simply maintain multiple copies of the data at different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC Workshops °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1871-7/25/11

https://doi.org/10.1145/3731599.3767373

Martin Burtscher
Department of Computer Science
Texas State University
San Marcos, TX, USA
burtscher@txstate.edu

fidelities. Rather, it encodes the extra information stored in each
representation such that the user does not have to download redun-
dant information in subsequent progressive retrievals. Typically,
progressive compression varies an input by resolution or precision.
We study a method that varies resolution and compresses each
resolution level with a potentially different compression algorithm.

To find suitable compression algorithms for each level, we use
the LC framework [9]. LC generates compression algorithms from a
library of data transformations called components that are chained
together to form pipelines. Fig. 1 visualizes how a compression
pipeline accepts and passes an input through its components to
yield a compressed output. LC has been used to generate several
state-of-the-art lossless and lossy compressors including SPratio,
SPspeed, DPratio, DPspeed, and PFPL [8, 11].
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Figure 1: A compression pipeline with 3 stages generated by
the LC framework (I = input, O = output)

Only some of the components, called reducers, compress the data.
The others rearrange or modify the data to expose redundancies that
can be leveraged by subsequent reducer components in the pipeline.
For this study, we use 69 total components—including 36 reducers.
With 3 stages, LC can generate 69 X 69 X 36 = 171,396 pipelines.

This paper makes the following main contributions:

o It outlines a tree-based resolution-varying progressive com-
pression approach.

o It demonstrates that the proposed approach achieves compet-
itive compression ratios with traditional lossy compression
methods that represent the same data.

e It analyzes the effect of varying resolution on the data quality.

The rest of this paper is organized as follows. Section 2 summa-
rizes related work. Section 3 demonstrates the proposed approach.
Section 4 outlines the experimental methodology. Section 5 presents
and analyzes the results. Section 6 summarizes and concludes.

2 Related Work

Progressive JPEG was introduced with the JPEG standard [16]. It
utilizes regular JPEG’s discrete wavelet transform but scans the im-
age multiple times to encode successively improving quality levels
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of the image data. The subsequent levels only encode the lower
significant bits of the values to avoid storing redundant information.

MGARD [4, 5] decomposes scalar fields into a hierarchy of com-
ponents of varying scale and resolution and adaptively quantizes
each component’s coefficients to provide error-bounded compres-
sion. PMGARD [14, 17] introduces progressive retrieval in terms of
both precision and resolution simultaneously. This is achieved by
optimizing MGARD’s data refactoring technique and performing
bit-plane encoding.

Hoang et al. [13] build a precision-resolution tree by restructur-
ing a scalar-field input into a tree (varying resolution), then splitting
each node into a sequence of bit planes (varying precision). While
the idea of building trees is shared, we opt to sum each group of
values instead of rearranging the original values. This allows users
to recover averages of the data during partial decoding instead of
equidistant samples of the data. Furthermore, we utilize a specific
quantization method that allows for the summation of bin numbers
to enable our approach on floating-point data.

Yang et al. [19] introduce IPComp, which employs interpolation
and bitplanes to offer progressive reconstruction. Our averaging
approach to decoding is similar to IPComp’s linear interpolation,
but we differ in the quantization and compression techniques.

Magri and Lindstrom [15] introduce a general framework for
progressive compression that guarantees successively tighter er-
ror bounds at every progressive level. Each level only needs to
encode the difference between the previous level’s error-bounded
reconstruction and the current level’s tighter error-bounded recon-
struction. The approach is general because any lossy, error-bounded
compressor can be used to encode/decode at each progressive level.

Early progressive compression works target 3D triangle meshes [6,
10]. Generally, these works use mesh decimation and vertex predic-
tion techniques to vary the number of vertices while maintaining a
good approximation of the original mesh. Our approach differs in
target application and, therefore, in the progression techniques.

3 Approach

This section discusses the progressive approach, which consists
of quantization, tree encoding, and layer compression. Section 3.1
discusses the necessary quantization step for floating-point support.
Sections 3.2 and 3.3 present the proposed tree encoding/decoding
approach via a simple example on 1D data and a discussion on
generalizations for n-dimensional support, respectively. Lastly, Sec-
tion 3.4 outlines the way each progressive layer is compressed.

3.1 Quantization

We first quantize the data from float values to integer bins using the
point-wise NOA (normalized absolute) quantizer from PFPL [11],
which accepts a user-defined error bound and normalizes it to
the range of values (minimum to maximum) in the input. The
quantizer encodes values either lossily as an integer that represents
an approximation of the original value or losslessly if it cannot
otherwise meet the selected error bound [12].

3.2 1D Demonstration

Fig. 2 demonstrates a simple example of the tree encoding scheme
used to build progressive layers. The diagram is arranged in the
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order of the computation from top to bottom. Suppose we quantized
a floating-point input that had 8 elements and yielded the values in
layer 0. To form progressive layers, we can sum each pair of values
to create a parent. For example, layer 0 sums the first two values—1
and 2—to create their parent with a value of 3. In this example,
the encoder repeats this process to build 3 layers up to the root.
Importantly, the root (36) is the sum of all values in the original
quantized input. To avoid overflow, we cast the original quantized
32-bit integers to the 64-bit long long type before performing
addition. In the event of an incomplete pair (i.e., an odd-sized layer),
the extra value would simply be passed up to the next layer as if it
had a neighboring zero.

Layer 1
Layer 2

Layer 3

Encoded output: [36[10]3 [11[1[3[5]7]

Figure 2: Building progressive layers from 1D data

The tree representation holds some redundant information that
can be omitted from the final encoded output. Namely, we can drop
one child from each summed group. In this 1D example, we drop
the right child of every pair (dashed circles), and emit values to
the encoded output in order of root (layer 3) to base (layer 0). The
encoded output is stored in order from layer 3 to 0 in long long
format. Thus, for this example, the output has the same number of
elements as the input but the size in bytes is doubled.

Encoded input: |36[10]3 [11[1[3[5]7]

Layer 3

Layer 2

Layer 1

Figure 3: Full decoding

Fig. 3 demonstrates the decoding technique if the user chose
to download the entire encoded data produced by the example
in Fig. 2. Again, the diagram is arranged in computation order:
starting with the encoded input at the top and ending with the
reconstructed output in layer 0. To begin, we retrieve the top layer
from the encoded input (layer 3 with root 36). To decode each layer,
we retrieve the left children from the next layer (layer 2 with left
child 10), then subtract the left child from its parent to recover
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the right child. To fully decode to the original quantized input, we
repeat this down to layer 0.

Partial input:

Layer 3

Figure 4: Partial progressive decoding from layer 2

Now suppose the user instead only downloaded layers 3 and 2.
Fig. 4 demonstrates how to approximate from the partially decoded
data in layer 2. We simply divide each value in the previous layer
by the number of children (i.e., 10 divided by 2) to approximate the
values of its children. By repeating this down to layer 0, we end up
with an approximation of the same size as the original but a quarter
of the “resolution”. Both the full and partial decoded versions can
then be de-quantized to yield a floating-point reconstruction.

3.3 n-Dimensional Generalizations

While the preceding subsection walked through a simple 1D exam-
ple, our approach also supports higher dimensions. To generalize,
the 1D pairs become n-dimensional groups of 2" values. When build-
ing each layer, we can sum up the values in the group to create the
parent. When encoding, we write every value of each group except
the last (i.e., the bottom-right in 2D, the bottom-right-back in 3D,
etc.). Thus, the total encoded output will have the same number of
elements as the original input (plus extra elements in the event of
an odd layer size in one or more dimensions, e.g., a 2-by-3 layer).
Fig. 5 demonstrates the encoding approach on a 4-by-4 2D example
consisting of four 2-by-2 (color-coded) groups. The dropped values
from each group are marked with a stroked box.

Layer O Layer 1 Layer 2
1(2(3]|4
2 3 8 |14
> > 53
3(3(4]|4 14 D
4 4

Encoded output
53| 8 [1a[1a]1]2]2]3]4|3]3]|3]4]4]4]4]

Figure 5: Building progressive layers from 2D data

Like in 1D, the layers are emitted in order of the top layer (layer 2
in the example) to layer 0. Importantly, the values of each group are
emitted to the encoded output together rather than being encoded in
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the order of the original file (e.g., row-by-row in 2D). For instance,
in Fig. 5, layer 0’s encoded output starts by writing the top-left
group (red) instead of writing the entire first row, which spans two
groups (i.e., elements 1, 2, 3, 4). Reordering the values in such a way
can group more similar values together, which typically leads to
higher compression ratios.

3.4 Layer Compression

After the tree is built and the redundant values from each layer
have been dropped, we can compress the data to save storage space.
Since the layers may exhibit different data patterns and charac-
teristics, it is prudent to explore the effect of compressing each
layer’s encoded representation with an independent compression
algorithm to maximize the compression ratio. We use LC to gener-
ate and search for lossless compression pipelines for this purpose.
Section 5.2 discusses which compression pipelines perform well for
each layer. In the decoding stage, each retrieved layer must thus be
decompressed by LC before decoding the tree.

Note that LC handles data in 16 kB chunks. In order to avoid di-
minishing returns in compression ratio and to save encoding/decoding
time, we stop building the progressive layers when the next higher
layer’s emitted size would be smaller than 16 kB.

4 Experimental Methodology

We aim to evaluate the proposed approach in terms of compression
ratio and quality of the data reconstruction. These metrics are
system-independent, so we do not list system specifications. For our
evaluation, we use a total of 58 files from the following SDRBench [3,
20] datasets: CESM-ATM (3D), EXAALT Copper, ISABEL [1], and
NYX [2, 7]. The files of each dataset are described in Table 1. Note
that we split the EXAALT Copper dataset to separate the fields
with different dimensions.

Table 1: Input datasets

Dataset # Files | File Dimensions | Filesize (MB)
CESM (3D) 33 | 26 X 1,800 X 3,600 642.7
EXAALT (1) 3 5,423 X 3,137 64.9
EXAALT (2) 3 83 X 1,077,290 341.1
ISABEL 13 100 X 500 x 500 19.1
NYX 6 512 X 512 X 512 512.0

For the quantizer, we tested the following normalized absolute
error bounds [11]: 1073, 1074, 1073, 107%. This paper shows the
results for 107°. The other error bounds yield similar trends but
higher compression ratios and lower initial quality since they accept
more initial loss.

To search for LC pipelines, we start with a cursory search for
2-stage pipelines for each layer at each of the tested error bounds.
Then, we pin the 1% stage of each layer’s best 2-stage pipelines to
the 1% stage of our 3-stage pipelines. This technique saves search
time while yielding well-compressing algorithms. Performing an
exhaustive 3-stage pipeline search per layer would be orders of
magnitude slower. For this particular study, we pinned the following
components to stage 1, yielding 10 X 69 X 36 = 24,840 pipelines: NUL,
BIT_8, DIFFMS_8, DIFFNB_8, HCLOG_8, RARE_4, RAZE_4,RRE_3,
RZE_2, and RZE_4. Note that we include the NUL component,
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Table 2: Running compression ratio (NOA error bound = 10~°)

Layer Pipeline CESM | EXAALT (1) | EXAALT (2) | ISABEL | NYX
8 | DIFFNB_8 RAZE_8 RARE_38 - - 21673.78 - -
7 | DIFFMS_8 BIT_8 RZE_2 - - 7387.46 - -
6 | RZE_4 TUPL6_4 RARE_4 - 4007.67 2511.69 - -
5 | DIFFMS_8 BIT_8 RZE_1 30576.39 1081.40 849.86 - | 38789.05
4 | DIFFMS_8 RZE_4 RAZE_4 3966.49 306.16 254.73 6321.55 5277.55
3 | DIFFMS_8 RZE_4 RAZE_4 599.06 87.09 76.39 1013.22 755.25
2 | DIFFMS_8 BIT_8 RZE_1 109.39 23.74 22.76 175.72 120.02
1 | DIFFMS_8 BIT_8 RZE_1 20.26 6.62 6.53 31.73 19.82
0 | DIFEMS_8 BIT_8 RZE_1 356 1.86 1.88 6.03 3.64
Same Pipeline All Progr. Layers | DIFFMS_8 BIT 8 RZE _1 3.56 1.85 1.88 6.03 3.64
Same Pipeline All Inputs, Lossy | DIFFNB_8 BIT 4 RZE 1 5.40 1.88 1.94 6.00 3.68
Pipeline Per Input, Lossy | Exhaustive 5.42 2.20 1.96 7.22 3.75
Pipeline Per Input, Lossless | Exhaustive 2.02 1.85 1.46 2.39 1.42

which simply passes its input on to the next component, in order
to consider 1- and 2-stage pipelines in the search.

5 Results

This section presents the results. Subsections 5.1 and 5.2 analyze
the compression ratios. Subsection 5.3 investigates the effect of
resolution progression on data quality.

5.1 Running Compression Ratio

To understand the compression ratio in terms of how much ac-
cumulated encoded data the user must download to retrieve each
resolution layer, we can use the running compression ratio, which
is defined as the original file size divided by the accumulated sizes
of the target layer and all layers above it (higher is better). Table 2
presents the geometric mean of the running compression ratios
for each dataset. It also displays several baselines. First is the run-
ning compression ratio down to layer 0 if each progressive layer
was compressed by the single-best pipeline rather than their own
independent pipelines. The final three baselines are traditional,
non-progressive approaches: the lossy compression ratio from the
single-best pipeline across all inputs, the lossy compression ratio
from each file’s best pipeline, and the lossless compression ratio
from each file’s best pipeline. For all baselines but the first, we
utilize LC’s full three-stage search space of 171,396 pipelines. Since
each dataset has different dimensions, the number of generated
progressive layers differs per column. If a layer is not reached we
leave the cell blank.

Starting at each dataset’s topmost layer, we see extremely high
compression ratios. As we progress downwards—meaning the user
retrieves extra data to improve the resolution—the running com-
pression ratio expectedly goes down. Importantly, all layers except
layer 0 always have a running compression ratio greater than all
the traditional-compression baselines. With the exception of the
CESM dataset, decoding down to layer 0—that is, recovering the
equivalent data of a traditional lossy method—always achieves a
running compression ratio that is within 5% of the single-pipeline
lossy baseline. Furthermore, progressive retrieval down to layer 0
always beats lossless compression.

Importantly, we observe no meaningful difference in the running
compression ratio down to layer 0 between the approach that uses
different pipelines per layer and the approach that uses the same
pipeline per layer. While not shown, the running compression ratios
of layers 1 and above with this single pipeline had a negligible loss.
Notably, the best pipeline to use across all pipelines is the same as
the best pipeline to use only on layer 0 (and also layers 1 and 2):
DIFFMS_8 BIT_8 RZE_1. This is likely because layer 0 is the largest
layer and influences the running compression ratio the most. We
discuss the constituent components of this pipeline in Section 5.2.

We can conclude the following from these observations. First,
for all but one of the evaluated datasets, the proposed approach
achieves compression ratios that are on par with the traditional
approach of compressing all files with the same pipeline, while of-
fering users the added capability of progressive retrieval. Second, all
evaluated datasets exhibit significantly higher compression ratios
if decoded down to layer 1 or higher, meaning the partial retrieval
of a file does not incur a penalty on compression ratio. Lastly, using
a different pipeline per layer is not necessary for these inputs, as
using a single well-compressing pipeline for all layers yields almost
the same compression ratios.

5.2 Per-Layer Compression Ratio

To understand how each layer compresses, Table 3 shows the inde-
pendent compression ratios of each layer. The per-layer compression
ratio is the original size of the layer (i.e., elements of the encoded
output with the same color in Fig. 2) divided by its compressed size.
Note that higher layers have a significantly smaller size than lower
layers before LC compression.

There is a dramatic increase in compression ratios as we go down
from the top layer to the lower layers with more values. This is the
opposite of what was observed for the running compression ratios,
which is likely due to the lower layers having more leading zeros
in each value since fewer bin-number additions have occurred—
making these values easier to compress. Furthermore, the higher
per-layer compression ratios for lower layers is exacerbated by
the dimensionality of the inputs. For instance, CESM, ISABEL, and
NYX are 3D datasets, and the compression-ratio increase from each
dataset’s topmost layer to the 0" layer is much more dramatic than
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Table 3: Per-layer compression ratio (NOA error bound = 107%)

Layer Pipeline CESM | EXAALT (1) | EXAALT (2) | ISABEL | NYX
8 | DIFFNB_8 RAZE_8 RARE,_8 - - 2.04 - -
7 | DIFFMS_8 BIT 8 RZE_2 - - 2.11 - -
6 | RZE_4 TUPL6_4 RARE 4 - 2.00 2.15 - -
5 | DIFFMS_8 BIT 8 RZE_1 2.34 2.21 2.42 - 237
4 | DIFFMS_8 RZE_4 RAZE 4 2.41 252 2.47 363 | 2.61
3 | DIFFMS_8 RZE_4 RAZE 4 2.97 2.86 2.79 443 | 301
2 | DIFFMS_8 BIT 8 RZE_1 4.02 3.06 313 587 | 3.90
1 | DIFFMS_8 BIT 8 RZE_1 5.51 345 347 850 | 5.20
0 | DIFFMS_8 BIT 8 RZE_1 7.56 3.87 3.97 13.08 | 7.85

(a) Original data

(b) Layer 0

(e) Layer 3

(f) Layer 4

(c) Layer 1 (d) Layer 2

(g) Layer 5

Figure 6: CLDICE progressive layers (NOA error bound = 107°)

in the 2D EXAALT datasets. This suggests that the LC pipelines
are exploiting the grouping of nearby values performed by the
tree encoding phase, and that there is more correlation between
values in the lower layers. Specifically, the 3D inputs group and
emit 7 nearby values at a time while the 2D inputs group and emit
3 values at a time. While this grouping technique seems to benefit
compression ratios, it necessarily means that each layer drops more
values when summing a group to create a parent. Luckily, this
does not seem to incur a major difference in data quality as will be
investigated in Section 5.3.

In LC, each component is available with a set of word sizes
that it can operate at—typically 1, 2, 4, and 8 bytes. Regarding the
pipelines for each layer, we observe that layers 0 through 2 pick the
same pipeline: DIFFMS_8 BIT_4 RZE_1. Recall that this is also the

pipeline that, when used on all layers, yields the best single-pipeline
progressive running compression (see Fig. 2). Since these layers
contain the most data to compress, this pipeline is arguably the most
crucial to the overall compression of the files. DIFFMS_8 outputs
the difference sequence of 8-byte (i.e., 64-bit long long) values in
magnitude-sign format. Then, BIT 8 rearranges the data to output
the first bit of every 8-byte value, then the second bit of all values,
and so on. If the difference sequence contains values with many
leading zeros, then BIT_8 moves those zeros to the beginning of the
file. The last component, RZE_1 performs repeated zero elimination
on 1-byte values. Thus, for layers 0 through 2, it seems that the
values are quite smooth, yielding a difference sequence with many
leading zeros, which are exploited by the second and third stages.
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Figure 7: Differences of reconstructed layers from original CLDICE file (NOA error bound = 107¢)

The other layers have different pipelines yet include similar com-
ponents. However, as discussed in Section 5.1, the same-pipeline-
all-layers compression ratios are so close to the unique-pipeline-
per-layer approach that the unique pipelines may not be necessary.

5.3 Quality

While the running compression ratios comparatively surpass or
are on-par with the baseline traditional compression methods, it
is necessary to analyze the effect of the progression on the quality
and usability of the data.

Fig. 6 visualizes the 13t 2D slice of the CLDICE input from the
3D CESM-ATM dataset at each reconstructed progressive layer.
We choose this slice as it is in the middle of the first dimension
of this 26 x 1,800 X 3,600 input. The value range for this file is
approximately [—2.6 X 10722,7.8 x 107°], and the average is ap-
proximately 1.6 x 107°. For visibility’s sake, we plot each image
from 0 to 4x 10~>. Naturally, the resolution degrades as we progress
up to the lower-resolution layers. We also observe that each value
progressively approaches the average of all values. However, in all
layers, we can see characteristics of the turbulent region, which
presumably are of the most interest.

Fig. 7 shows the difference between the reconstructed progres-
sive layers 2, 3, 4, and 5 and the original data, visualized on the same
132 slice of CLDICE. We omit layers 0 and 1 because the differences
are so small that they are imperceptible in our charts. We display
the differences with a symmetrical range of [-3.0x107>,3.0x107].
Evidently, the differences trend in the negative direction, meaning
the differing values in the reconstructions tend to be less than the
original value. This makes sense, since the turbulent region consists
of higher values than the average value (1.6 x 107°). As the progres-
sive reconstructions approach the average value, the reconstructed
values necessarily tend to be less than the original values. For the
other inputs, we also observe this tendency to approach the average
value. Still, the magnitude of the differences are relatively small
relative to the range of the input.

These visualizations demonstrate the utility of the proposed
approach to preview data. That is, a user could download a low-
resolution version and have enough information to decide whether
to download a higher resolution for computation or which part

of the dataset is likely of interest and should be downloaded at a
higher resolution.

-
=)
>

CESM

EXAALT (1)
0.8 —— EXAALT (2)
—— ISABEL
s 0.6 NYX
%]
(%]
0.4
0.2
0.0

Layer

Figure 8: SSIM across layers (NOA error bound = 107%)

Fig. 8 presents the structural similarity index measure (SSIM) [18]
for each file as it progresses through its layers. SSIM rates a recon-
struction’s similarity to its original version from 0 to 1, with 1
representing an exact reconstruction. Note that, since layer 0’s
quality is established by the quantizer’s base error bound, there is
already some loss of SSIM at layer 0.

These results essentially quantify the qualitative findings from
Figs. 6 and 7. Naturally, the SSIM decreases as we progress through
the layers. However, there is no significant difference in the SSIM’s
rate of change between these datasets of different dimensions and
sizes. We observe the same trends for all other tested error bounds,
albeit starting at lower SSIMs for looser error bounds. Users could
employ such a metric to determine what range of layers is mean-
ingful. Considering that layers 1 and above all have higher running
compression ratios than the traditional approaches (see Section 5.1),
any layer that is usable would deliver a shorter download time.

6 Summary and Conclusions

This work investigates a resolution-based progressive compression
method that combines an n-dimensional tree-encoding technique
with per-layer customized compression to achieve similar com-
pression ratios as traditional non-progressive compression at the
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same error bounds. Our visualizations show that even the lowest-
resolution layers maintain characteristics of the data that could be
useful to users. Moreover, we observe reasonable SSIM degradation
across all evaluated datasets as we progress through the layers.
The approach’s n-dimensional support bolsters its possibility for
usage in real applications. Additionally, the partial decoding method
makes it possible to implement support for user interruption—
where a user could stop a progressive download at any moment
and still retrieve a usable version of the data. However, there are
some tradeoffs. Mainly, the quantization method cannot guarantee
an error bound for layers beyond the base layer. The summing of
quantized values has the possibility of mixing losslessly-encoded
floating-point values and lossy integer bins—which can introduce
unpredictable errors. To address these tradeoffs, it is worth explor-
ing techniques that progress in terms of guaranteed error bounds.
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