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Abstract—Over the last two decades, parallelism has become
the primary method for speeding up computer programs. When
writing parallel code, it is often necessary to use synchronization
primitives (e.g., atomics, barriers, or critical sections) to enforce
correctness. However, the performance of synchronization prim-
itives depends on a variety of complex factors that non-experts
may be unaware of. Since multiple primitives can typically be
used to complete the same task, choosing the best is often
non-trivial. In this paper, we study the performance impact
of these factors by measuring the throughput of OpenMP and
CUDA synchronization primitives along multiple dimensions. We
highlight interesting and non-intuitive behavior that software
developers should be aware of when writing parallel programs.

Index Terms—multithreading, parallel programming, synchro-
nization, scalability, CUDA, OpenMP

I. INTRODUCTION

Maximizing parallelism has become the primary method of
speeding up program execution. Until the early 2000s, the
performance of a program was mostly determined by the clock
frequency of the processor, which, according to optimistic
interpretations of Moore’s Law [1] and Dennard/MOSFET
scaling [2], was predicted to double approximately every
1.5 years. However, physical limitations have slowed this
scaling [3] [4] and led to the multi-core revolution. As a
consequence, the scalability of a program now depends on
the fraction of the code that can run in parallel [5], making
increasing the parallelism crucial—especially in the context of
high-performance computing.

When writing parallel code, it is often necessary to use
synchronization to prevent data races or to enforce a specific
ordering. Parallel-programming APIs provide commonly-used
parallelism constructs (e.g., barriers and atomics), which we
refer to as synchronization primitives. These primitives come
with their own complexities, such as whether an atomic
operation implies a memory fence. Moreover, the performance
of synchronization primitives may be impacted by hardware
factors other than the number of cores. Yet, developers are not
always aware of these ever-changing and system-dependent
complexities, which can lead to programs that do not exploit
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the available parallelism well, resulting in poor performance
and/or scaling.

Software developers often have to choose between multiple
primitives that accomplish the same task. Each implementa-
tion provides a tradeoff between generality and performance.
However, a programmer may not be aware of these tradeoffs
and select a suboptimal solution. Such issues are exacerbated
when writing parallel programs for both CPUs and GPUs. Fun-
damental architectural differences between these devices mean
that primitives with the same net result may be implemented
differently and, therefore, exhibit non-trivial behavioral and
performance differences.

Seasoned programmers can internalize many of these in-
tricacies over time, but there are too many possible pitfalls
for non-experts to maximally exploit the potential benefits of
parallelism. Hence, we need to identify the behavior and mea-
sure the performance of important synchronization primitives
to guide non-experts in effectively choosing the best primitives
for a given scenario.

This paper studies the throughput behavior of many
commonly-used OpenMP and CUDA synchronization primi-
tives across various parameters. We perform our measurements
on several systems with CPUs and GPUs from different
vendors and generations. To the best of our knowledge, a
similar study has not been conducted before.

This paper makes the following main contributions.

• It describes a testing framework to measure the execution
time of single synchronization primitives.

• It presents a detailed throughput analysis of various
primitives across several parameters and systems.

• It analyzes the behavior of important synchronization
primitives and provides recommendations for software
developers.

The code and results are open-source and available [6].
The rest of this paper is structured as follows. Section II

gives an overview of OpenMP and CUDA. Section III de-
scribes our measurement approach. Section IV outlines our
experimental methodology. Section V presents and analyzes
the results. Section VI discusses related work. Section VII
provides a summary and conclusions.
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II. BACKGROUND

This section briefly introduces the parallel-programming
APIs—OpenMP and CUDA—and their synchronization prim-
itives that we evaluate. It also provides an example that
demonstrates how the APIs evolve and how the performance
behavior of different primitives can be non-intuitive.

A. OpenMP

OpenMP [7] is a popular open-source API that enables
multithreading in C/C++ and Fortran programs. In C/C++,
this is mostly accomplished with preprocessor directives. The
rest of this subsection discusses the commonly-used OpenMP
synchronization primitives that we evaluate.

1) Barrier: A barrier is one of the most basic synchroniza-
tion primitives. It blocks every thread until all other threads
have also reached it. Barriers can be explicitly called or are
implicitly present after many other primitives.

2) Atomics: Atomics ensure that only one thread can read/
write a variable at a time. OpenMP includes several flavors of
atomic operations, including update, read, write, and capture.
Atomic read and write are self-evident. Atomic update reads
a variable, performs an operation on it, and writes the result
back to the variable—all atomically. Atomic capture is similar
to atomic update, but a second variable “captures” the value
of the updated variable (e.g., v = x++).

3) Critical Section: A critical section is a section of code
that restricts execution to one thread at a time. As critical
sections enforce serial execution, they are generally used to
prevent data races on complex operations. Internally, OpenMP
implements the critical section by having each participating
thread acquire and later release a shared lock. The locking
overhead can be substantial, making critical sections slow for
simple operations.

4) Memory Flush: The memory consistency model specifies
the allowed reorderings of reads or writes of one variable
relative to the reads or writes of other variables in parallel
programs. In cases where a thread reads and writes multi-
ple variables without synchronization, the compiler and the
hardware may reorder the accesses to the different variables,
potentially breaking the code if the programmer intended for
one variable (e.g., a flag) to guard the other variable (e.g.,
so that a consumer thread will only access the other variable
after it is ready). Memory fences prevent such reorderings by
ensuring that all memory operations before the fence finish
before any memory operations start that appear after the fence.
In OpenMP, a memory fence is called a flush. Flushes are
implicit after many OpenMP primitives. They can also be
invoked explicitly.

B. CUDA

CUDA [8] is a proprietary API and language based on
C/C++ that allows programmers to write non-graphics code
for NVIDIA GPUs. GPU code is written as kernels—special
functions that are compiled for the GPU. Kernels are launched
with a specified number of thread blocks, a logical group of up
to 1024 threads. In hardware, these thread blocks are executed

on streaming multiprocessors (SMs), which are essentially
vector processors with their own cores, registers, and shared
memory/L1 cache. The specifications of an SM vary with
the architecture, and the number of SMs per GPU vary from
device to device. CUDA allows for multiple blocks to run
simultaneously on an SM, provided that the blocks do not
exceed the resources of the SM. Notably, the maximum threads
per SM can be more than the maximum threads per block.

GPUs achieve high throughput from their single-instruction-
multiple-thread behavior. On the SM, thread blocks are com-
posed of warps, or contiguous sets of 32 threads. A warp
of threads executing the same instruction(s) will execute
simultaneously—maximizing parallelism. However, if at least
one thread in a warp is not executing the same instruction as
the others (e.g., branching statements), this will result in thread
divergence, which can significantly impact performance.

The rest of this subsection discusses the commonly-used
CUDA synchronization primitives that we investigate.

1) Syncs: CUDA includes barriers at multiple granularities.
For example, __syncthreads() synchronizes all threads
in a block, and __syncwarp() synchronizes all threads in
a warp.

2) Atomics: CUDA provides many atomic operations (add,
sub, max, min, etc.). If an operation is not provided, the
programmer can often emulate it using an atomic compare-
and-swap (atomicCAS()), which compares the current value
at an address with the expected value, and exchanges it with
a new value if the comparison passes. atomicExch() is
similar but skips the comparison.

3) Thread Fences: In CUDA, a memory fence is im-
plemented as a __threadfence() call, which ensures
that all memory accesses before the fence occur before
any memory accesses after the fence, across the entire de-
vice. Variants such as __threadfence_block() and
__threadfence_system() also exist, which change the
scope to just a thread block and the entire system (CPU and
GPU), respectively.

4) Warp-Level Functions: CUDA includes warp shuffle
functions, which synchronize a defined subset of threads in
the warp and have them exchange values (without accessing
memory) according to the function’s exchange pattern. For
example, __shfl_sync() can broadcast a value from one
thread to all other participating warp threads.

CUDA also includes warp voting functions, which take a
value from each thread in the warp and compare it with
zero. The results of the comparison are then reduced and
broadcasted to each participating thread.

C. CUDA Example

We now provide a small example illustrating how the CUDA
API evolved and how the performance of different synchro-
nization primitives can be non-intuitive. Listing 1 presents
five distinct ways of implementing a maximum reduction in
CUDA. Many other solutions exist. We show these five to
make several points.

296



1 const int lane = threadIdx.x % warpSize;
2 const int i = threadIdx.x + blockIdx.x * blockDim.x;
3 __shared__ int block_result;
4
5 // Reduction 1: since compute capability 1.3
6 if (i < size) atomicMax(&result, data[i]);
7
8 // Reduction 2: since compute capability 3.0
9 if (__any_sync(˜0, i < size)) {

10 int val = (i < size) ? data[i] : INT_MIN;
11 for (int j = warpSize / 2; j > 0; j /= 2)
12 val = max(val, __shfl_xor_sync(˜0, val, j));
13 if (lane == 0) atomicMax(&result, val);
14 }
15
16 // Reduction 3: since compute capability 6.0
17 if (threadIdx.x == 0) block_result = INT_MIN;
18 __syncthreads();
19 if (i < size) atomicMax_block(&block_result, data[i]);
20 __syncthreads();
21 if (threadIdx.x == 0) atomicMax(&result, block_result);
22
23 // Reduction 4: since compute capability 8.0
24 if (threadIdx.x == 0) block_result = INT_MIN;
25 __syncthreads();
26 if (__any_sync(˜0, i < size)) {
27 int val = (i < size) ? data[i] : INT_MIN;
28 val = __reduce_max_sync(˜0, val);
29 if (lane == 0) atomicMax_block(&block_result, val);
30 }
31 __syncthreads();
32 if (threadIdx.x == 0) atomicMax(&result, block_result);
33
34 // Reduction 5
35 int thread_result = INT_MIN;
36 if (threadIdx.x == 0) block_result = INT_MIN;
37 __syncthreads();
38 for (int j = i; j < size; j += blockDim.x * gridDim.x)
39 thread_result = max(thread_result, data[j]);
40 atomicMax_block(&block_result, thread_result);
41 __syncthreads();
42 if (threadIdx.x == 0) atomicMax(&result, block_result);

Listing 1: Five implementations of a reduction in CUDA

Reduction 1 is the most general. It works on all but the
very first GPUs that supported CUDA. Each thread processes
one data element and performs an atomic maximum operation
on a global variable.

Reduction 2 employs warp primitives that only became
available in later hardware generations (with higher compute
capabilities). These primitives complicate the code but lower
the number of atomic operations substantially.

Reduction 3 uses block-scoped atomics and barriers to
further minimize the number of global atomics.

Reduction 4 exploits a warp-based reduction, a recent hard-
ware addition, to lower the number of block-scoped atomics.

Reduction 5 is a variation of Reduction 3 that first computes
thread-local results using a persistent-thread approach.

Of the first four versions, Reduction 3 is the fastest, followed
by Reduction 4, then Reduction 1, and Reduction 2 is the
slowest. This is non-intuitive. After all, minimizing the number
of atomics does not yield the best performance, nor does
utilizing the latest hardware capabilities. In fact, Reduction
5, a persistent-thread [9] variant of Reduction 3 where each
thread processes multiple data elements, outperforms all four
shown versions and is about 2.5× faster than Reduction 2 on
our test input and GPU. It requires two block-scoped barriers, a
block-scoped atomic operation, and a global atomic operation

to be correctly synchronized.
These examples highlight the need for better understanding

of the performance of synchronization primitives for the
following reasons. 1) Even basic parallel primitives like re-
ductions have complex synchronization requirements. 2) Many
correct solutions exist, each with its own unique performance
implications. 3) It is non-obvious which solution will be the
fastest. Hence, even when targeting a single device, the pro-
grammer may want to implement and test several alternatives.
4) There is a tradeoff between portability and speed. To obtain
high performance on different devices, programmers may have
to maintain multiple versions of their code.

III. APPROACH

Measuring the runtime of synchronization primitives in
parallel code requires careful design to avoid accidentally
timing irrelevant parts of the testing framework. Specifically,
we must avoid timing any overhead created by function calls,
loops, or variable initialization. Additionally, we must ensure
that the synchronization primitive we are timing is compiled
into actual machine code and runs as expected. This usually
requires that the tests perform some computation or use the
output so that the compiler does not mark the timed primitive
as dead code and remove it.

For each synchronization primitive, we define two
functions—a baseline and a test function—each of which
times how long it takes to perform many iterations of the
primitive. The functions are nearly identical except the test
function performs the measured synchronization at least one
more time in each iteration. For example, the loop bodies for
measuring the execution time of an OpenMP barrier would be
a single #pragma omp barrier in the baseline function
and two such pragmas in the test function. Thus, when we
subtract the runtime of the baseline from the test, we are
only left with the runtime of the measured synchronization
primitive—without any of the testing overhead. This method-
ology has been inspired by Bialas and Strzelecki’s work on
benchmarking thread divergence in CUDA [10].

Listing 2 shows the template pseudocode for OpenMP. We
run a warmup loop of N_WARMUP iterations before the timed
section to eliminate any overhead associated with, for example,
fetching data from main memory for the first time. We include
a barrier after the warmup but before the timed code section to
ensure all threads are ready to begin the measurement. Note
that the inner loops at lines 10 and 22 are unrolled. If the
compiler respects this unrolling, it removes any overhead from
initializing and iterating the inner loop, which should improve
the timing accuracy. In all our tests, we record the runtime of
each thread separately.

Listing 3 shows the template pseudocode for the CUDA
codes. The CUDA test framework is nearly identical to the
OpenMP counterpart, except it is a CUDA kernel and uses
CUDA’s clock64() function to read the clock-cycle counter
at the start and end of the measured code section.
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1 void openmp_template(/* ... */) {
2 /* define shared variables here */
3
4 #pragma omp parallel num_threads(n_threads) ...
5 {
6 /* define private variables here */
7
8 for (int i = 0; i < N_WARMUP; i++) {
9 #pragma unroll

10 for (int j = 0; j < N_UNROLL; j++) {
11 /* measured synchronization(s) here */
12 }
13 }
14
15 #pragma omp barrier
16 double local_runtime;
17 timeval start, end;
18 gettimeofday(&start, NULL);
19
20 for (int i = 0; i < n_iter; i++) {
21 #pragma unroll
22 for (int j = 0; j < N_UNROLL; j++) {
23 /* measured sychronization(s) here */
24 }
25 }
26
27 gettimeofday(&end, NULL);
28 /* save elapsed time for each thread */
29 }
30 }

Listing 2: OpenMP Test Template Pseudocode

1 __global__ void cuda_template(/* ... */) {
2 /* define shared and private variables here */
3
4 for (int i = 0; i < N_WARMUP; i++) {
5 #pragma unroll
6 for (int j = 0; j < N_UNROLL; j++) {
7 /* measured synchronization(s) here */
8 }
9 }

10
11 __syncthreads();
12 long long start = clock64();
13
14 for (int i = 0; i < n_iter; i++) {
15 #pragma unroll
16 for (int j = 0; j < N_UNROLL; j++) {
17 /* measured synchronization(s) here */
18 }
19 }
20
21 long long stop = clock64();
22 /* save elapsed clock cycles for each thread */
23 }

Listing 3: CUDA Test Template Pseudocode

IV. EXPERIMENTAL METHODOLOGY

We use the following parameters in our experiments. All
tests vary the number of threads. For the CUDA codes, we
also vary the number of thread blocks. For tests that deal with
arithmetic or memory operations, we run the code with the
int, unsigned long long (ull), float, and double
data types. Since repeated type conversions can incur a large
performance cost, we ensure each variable that takes part
in an operation is of the tested type. In certain cases, we
omit data types that are not natively supported by the tested
synchronization primitive. Some of our codes operate across
arrays, with each thread reading/writing a private element. For
these codes, we vary the stride, which indicates the distance

between accessed elements. Lastly, some OpenMP tests vary
the thread affinity between “spread” and “close” to explore
the impact of thread placement. If the thread affinity is not
mentioned for a test, we did not specify the affinity and let
the system choose the thread placement.

We use the following procedure to measure the speed of
a synchronization primitive. For each combination of param-
eters, we perform a total of nine runs. Each run attempts to
gather a valid measurement seven times. Each attempt runs the
baseline and test function, recording the maximum runtime
across the running threads. If the maximum runtime of the
test function was less than the baseline kernel (suggesting
a faulty measurement due to random fluctuations in system
performance [11]), we reattempt. After all runs are complete,
we determine the median runtime of the seven test runs,
the median runtime of the seven baseline runs, and compute
the difference. To find the runtime of a single primitive, we
divide the result by the number of loop iterations (n_iter
= 1000) and by the unroll factor (N_UNROLL = 100).
Section V presents our results in terms of throughput, or
operations per second per thread, which is 1 / runtime for
the OpenMP tests and 1 / num_cycles / clock_freq
for the CUDA tests.

We set the number of runs, loop iterations, etc. after
experimenting with a wide range of parameter values and
finding that the results stabilize above a certain threshold. We
chose values that are well within the stable region but not too
high to keep the overall experiment runtimes reasonable.

Table I describes the CPUs and GPUs in our three test
systems. Additionally, we list the g++ and nvcc versions
on each system as well as the compute capability of each
GPU. For the GPUs, we list the clock frequency reported by
the cudaDeviceProp struct included in CUDA’s API [12].
We chose these systems for their diversity in architecture
generation, specifications, and manufacturer.

We compiled the OpenMP codes using g++ with the -O3
optimization flag and the CUDA codes using nvcc with the
same flag and the target GPU’s compute capability. We ran all
test codes on the three systems.

Note that each measured CUDA primitive is directly sup-
ported by the hardware and compiles into a single machine
instruction. Hence, we expect other compilers and GPU pro-
gramming APIs (e.g., OpenCL [13]) to yield similar results.
On the CPU, OpenMP primitives like atomics and memory
flushes are also compiler independent as they are supported in
hardware. Other primitives like barriers and critical sections
are implemented in the OpenMP library, so different compilers
using the same OpenMP library should produce similar results.

To minimize fluctuations, we ensure we are the only user on
the machine during tests. On System 3’s CPU, across the nine
runs, the standard deviation of a single primitive’s runtime
is typically about 7.8 nanoseconds, which is negligible. On
the GPU, there are no background processes or OS, and we
directly read the cycle counter. Thus, many of the GPU tests
yield the exact same runtime for all nine runs.
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TABLE I: System Specifications

(a) System 1

Intel Xeon E5-2687 v3
Base Clock Frequency 3.10 GHz
Sockets 2
Cores Per Socket 10
Threads Per Core 2
NUMA nodes 2
Main memory 128 GB
NVIDIA GeForce RTX 2070 SUPER
Compute Capability 7.5
Clock Frequency 1.80 GHz
SMs 40
Max Threads per SM 1024
CUDA Cores per SM 64
Memory 8 GB
g++ Version 12.3.1
nvcc Version 12.0
GPU Driver 550.67

(b) System 2

Intel Xeon Gold 6226R
Base Clock Frequency 2.80 GHz
Sockets 2
Cores Per Socket 16
Threads Per Core 2
NUMA nodes 2
Main memory 64 GB
NVIDIA A100 40GB
Compute Capability 8.0
Clock Frequency 1.41 GHz
SMs 108
Max Threads per SM 2048
CUDA Cores per SM 64
Memory 40 GB
g++ Version 12.3.1
nvcc Version 12.0
GPU Driver 535.113.01

(c) System 3

AMD Ryzen Threadripper 2950X
Base Clock Frequency 3.50 GHz
Sockets 1
Cores Per Socket 16
Threads Per Core 2
NUMA nodes 2
Main memory 48 GB
NVIDIA GeForce RTX 4090
Compute Capability 8.9
Clock Frequency 2.625 GHz
SMs 128
Max Threads per SM 1536
CUDA Cores per SM 128
Memory 24 GB
g++ Version 12.2.1
nvcc Version 12.0
GPU Driver 525.85.05

V. RESULTS

This section presents and analyzes our results. Unless oth-
erwise noted, all figures display measurements from System
3, as it is the system with the latest CPU and GPU. We
only provide results for the other systems when their behavior
differs significantly from System 3. The result charts show
the throughput (y-axis) for varying thread counts (x-axis).
Throughput is a higher-is-better metric. Note that some aspects
of OpenMP, CUDA, and the CPU and GPU architectures
are unknown to us. Thus, this section focuses on providing
recommendations for developers.

A. OpenMP Results

On each system, we ran the OpenMP codes for thread
counts from 2 to the maximum number of supported hyper-
threads. The dashed vertical line indicates the point where the
thread count matches the core count, that is, hyperthreading
is used to the right of this point. We omit a thread count of 1
since synchronization serves no purpose in a serial execution.

1) Barrier: Fig. 1 shows the throughput of the OpenMP
barrier for various thread counts. The thread affinity was set
to “spread” for this figure but did not make a significant impact
on this test.
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Fig. 1: Throughput of OpenMP Barrier

The throughput per thread initially decreases as more
threads participate. This is expected since the threads spend,
on average, more time waiting for the other threads to reach

the barrier. Surprisingly, beyond about 8 threads, the per-thread
throughput remains largely stable. Since OpenMP barriers are
implemented in a library, we cannot say what causes this
behavior. The throughput also does not decrease much when
hyperthreading is used. Since every thread participates in the
barrier, this implies that the scheduling of hyperthreads is quite
balanced on the tested CPUs. The following OpenMP tests
further suggest this to be the case.

2) Atomics: We tested several of OpenMP’s atomics to
compare and contrast their performance. Fig. 2 shows the
throughput of each thread atomically adding a value to a
shared variable using #pragma omp atomic update.
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Fig. 2: Throughput of OpenMP atomic update on a single
shared variable

Overall, we see the same performance trend as for the
barrier (see Fig. 1), indicating that the barrier implementation
is likely based on atomic operations on shared variables. For
the atomic increment, the integer types (int and ull) are
generally faster than the floating-point types (float and
double). The word size (32 or 64 bits) does not affect the
performance on our 64-bit CPUs.

We performed a similar experiment with OpenMP’s atomic
capture. The resulting behavior and throughputs are nearly
identical to the atomic update and not shown.

Fig. 3 displays the throughput of each thread atomically
adding a value to its own private element in a shared array. Of
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course, atomically protecting a private element is unnecessary
as there is no risk of a data race. However, we perform
this experiment to emulate a scenario where the possibility
of contention exists but does not occur. We repeated this
test with several strides (i.e., distances in elements between
accessed array elements) and show results for a stride of 1,
4, 8, and 16. Since each thread is accessing data from an
array, the stride dictates how much false sharing [14] occurs
when threads running on separate cores (with separate L1 data
caches) update elements that, while disjoint, belong to the
same cache line. We also tested thread affinities of “spread”
and “close” but saw no notable difference. To better highlight
the progression between the strides, the 4 y-axes are zero-
based and use the same scale.
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(a) Stride = 1
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(b) Stride = 4
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(c) Stride = 8
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(d) Stride = 16

Fig. 3: Throughput of OpenMP atomic update on private
elements in a shared array for different strides

Here, we see not only the effect of the data type but also
symptoms of the coherent caches. Note that the L1 cache line
size for System 3’s CPU is 64 bytes. Fig. 3a with a stride
of 1 (adjacent elements) shows the case with maximum false
sharing, where the 4-byte types (int and float) generally
perform slightly worse than the 8-byte types because the 4-
byte types have twice as many words in a cache line. As we
increase the stride, false sharing becomes less of a factor.
For example, Fig. 3b shows that the throughput of all four
data types is higher with a stride of 4. At a stride of 8,
something interesting happens as illustrated in Fig. 3c: the
throughput of the two 32-bit types further increases a little, but
the throughput of the two 64-bit types shoots up drastically
as there is now enough padding between accessed elements
for each thread’s element to reside in a separate cache line,
meaning there is no more false sharing. Fig. 3d shows that the
same happens to the 32-bit types when going to a stride of
16. In this last stride configuration, all types no longer suffer
from false sharing, and the bottleneck is instead the atomic

arithmetic on the data type (like in Fig. 2), which is why the
integer types are faster than the floating-point types, regardless
of word size. At this point, the throughput is largely constant
since the operations are embarrassingly parallel (they access
the private L1 caches) and there is no coherence traffic.

Note that, for any stride, hyperthreads running on the
same core cannot suffer from false sharing as they access
the same cache. However, as made evident by many of our
OpenMP tests, hyperthreading yields more variability in thread
timing, and, therefore, more chances of recording jitter in the
measurements.

Fig. 4 shows the throughput of OpenMP’s atomic write on
two systems. The baseline function performs an atomic write
to one shared memory location, and the test function performs
an atomic write to two shared memory locations on separate
cache lines. We present results from two systems due to the
notable jitter in System 3’s results (Fig. 4a), which we attribute
to architectural qualities of the AMD chip. System 1’s results
are similar to System 2’s.
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Fig. 4: Throughput of OpenMP atomic write on 2 systems

In spite of the jitter, the exponentially decreasing trend we
have seen before is again evident. The results echo those of the
atomic update, except the integer types (int and ull) have
no performance advantage since no arithmetic is involved.
Moreover, the size of the data type has no observable effect
on the throughput of the write. This is because all the tested
CPUs have 64-bit architectures, meaning they can perform a
store/load instruction on up to 64 bits (8 bytes) of data in a
single transaction.

We also performed experiments to measure OpenMP’s
atomic read, where the baseline function performs a non-
atomic read and the test function performs the same read
atomically. The intention was to measure the overhead of
performing the read atomically. We found that the difference
between the runtimes of the baseline and test functions were
extremely small and within the timer’s accuracy. Hence, we
conclude that the throughputs are actually the same, and there
is no performance penalty in using an atomic read.

3) Critical Section: It is well-accepted that critical sec-
tions are slower than atomics when performing a logically-
equivalent operation (since the critical section’s locking mech-
anism is implemented using atomics). Yet, it is important to
analyze the behavior of critical sections to guide their usage
in situations where no alternative implementation is available.
Fig. 5 shows the throughput of a critical section used to adding
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a value to a single shared variable. The thread affinity was set
to “spread”, but varying the affinity did not make a noticeable
impact.
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Fig. 5: Throughput of an addition on a single variable protected
by an OpenMP critical section

The trend for this figure is similar to the atomic counterpart
in Fig. 2, but the throughput drops more quickly and is lower.
We recommend developers only use critical sections when no
alternative exists.

4) Memory Flush: To measure a flush, we declare two
arrays with a size equal to the number of active threads, padded
by the test’s specified array stride. In the baseline function,
each thread increments its private element of each array by a
value (see Listing 2). The test function does the same except
with a flush in between the two operations.

Fig. 6 shows the throughput of a flush with the “close”
thread affinity at several strides for System 2. The “spread”
thread affinity yielded similar results. Note that the y-axis scale
is ×107 in Fig. 6a and 6b and ×108 in Fig. 6c and 6d. We
show System 2’s results because they are less noisy, but the
trends are the same on the other systems.
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(a) Stride = 1
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(b) Stride = 4
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(c) Stride = 8
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(d) Stride = 16

Fig. 6: Throughput of OpenMP flush for different strides

As we increase the stride, we decrease the impact of false
sharing. At a stride of 1, the throughput of the flush expo-

nentially decreases and plateaus at around half the number of
physical cores (16 for System 2). At a stride of 4, all types start
to exhibit oscillations—moreso for the 64-bit types. At a stride
of 8, where the 64-bit types are no longer affected by false
sharing, their throughput increases substantially. However, so
does the oscillation’s amplitude. At a stride of 16, the padding
is enough for all accessed elements to belong to their own
cache line, and the 32-bit types begin to exhibit the same
behavior as the 64-bit types. It seems that, in general, when
there is little to no false sharing, the impact of enforcing
the order of reads and writes with a flush is minimal in
our test code. In summary, an OpenMP flush has little per-
thread performance impact in situations where it is not really
necessary for enforcing consistency. Otherwise, it exhibits
similar throughput behavior as an atomic update or barrier.

5) Recommendations: Our OpenMP results lead to the
following recommendations. 1) Barriers are not much cheaper
when only a few threads are used, thus, they are not a concern
with larger thread counts. 2) Atomic updates or writes by mul-
tiple threads to the same memory location should be avoided,
as they are quite slow. 3) Atomic operations by multiple
threads to different locations are much faster if the different
locations do not reside in the same cache line. Thus, we
recommend that programmers avoid false sharing by assigning
work to threads that leads to mostly non-overlapping accesses
between threads if possible. 4) Atomic reads appear to not
incur any extra latency and can be used wherever prudent.
5) Critical sections should be avoided unless there is no other
option. 6) Flushes do not have a major performance impact
and can be used as needed. 7) In general, using hyperthreads is
fine as they do not significantly slow down synchronizations.

B. CUDA Results

On each GPU, we ran the CUDA codes with block counts
of 1, 2, half the number of SMs, the number of SMs, and twice
the number of SMs. Each block count was tested with thread
counts of powers of 2 through 1024. Note that the x-axis of
the result charts uses a logarithmic scale.

1) Syncs: Fig. 7 shows the throughput of
__syncthreads(), which is a block-wide barrier.
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Fig. 7: __syncthreads() throughput at any block count

The throughput is constant until we surpass the warp size
of 32 threads. The constant throughput up to the warp size
is expected because, at smaller sizes, the GPU still runs a
whole warp with some of the lanes disabled. Beyond the warp
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size, throughput drops because warps are required to wait
for each other. This mirrors the behavior of increasing active
threads in the OpenMP barrier (see Fig. 1), except on the GPU
more active warps consistently result in longer average wait
times. Note that, unlike in OpenMP, barriers are implemented
in hardware on GPUs. The results are identical for all block
counts since __syncthreads() is a block-wide barrier that
has no dependencies across blocks.

Fig. 8 shows the throughput of a __syncwarp(), a warp-
wide barrier [15], for Systems 1 and 3 at full and double
block configurations. We compare these GPUs because of their
difference in behavior, which stems from the differing number
of maximum threads per SM. The behavior of System 2 is the
same as System 3 and not shown.
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(a) System 3 (RTX 4090)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Threads per Block

2.25

2.50

2.75

3.00

3.25

3.50

Op
s. 

pe
r S

ec
. p

er
 T

hr
ea

d 
(×

10
5 )

40 blocks 80 blocks

(b) System 1 (RTX 2070 SUPER)

Fig. 8: Throughput of __syncwarp() on two systems

On both systems at both block counts, the throughput is
constant up to a point. For both systems, the double block
configuration drops in performance one step earlier than the
full block configuration. This can be attributed to the fact that,
except at 1024 threads, the double block experiments allocates
2 blocks to each SM. So, while the per-thread throughput
decreases, we are running twice the number of blocks at a
time and, therefore, twice as many threads per SM. Hence,
the __syncwarp() throughput depends on the number of
warps running on an SM rather than the number of warps per
thread block.

Next, let us focus on the full-block configuration. With
1024 threads per block, both systems must run one block to
completion and then the other. It seems like the RTX 4090
can handle up to 256 threads per SM, and the RTX 2070
SUPER can handle up to 512 threads per SM at full speed.
Beyond those thread counts, the throughput drops somewhat
(the y-axis does not start at zero).

2) Atomics: We tested several of CUDA’s atomics to an-
alyze their behavior. Fig. 9 shows the throughput of each
thread atomically adding a value to a single shared variable
using atomicAdd() at two notable block counts: 2 and
64 (half the number of SMs on the RTX 4090). The 1-
block configuration behaves like the 2-block configuration,
and the full and double configurations behave like the half
configuration, though at lower absolute throughputs.

For the int, the throughput is constant until we surpass
the size of a warp. Interestingly, the 2-block configuration
remains at a constant throughput up to 64 threads (2 warps).
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Fig. 9: Throughput of atomicAdd() on 1 shared variable

It seems that CUDA is able to automatically aggregate the
individual atomics into a warp-aggregated atomic [16], which
is implemented as a reduction-and-broadcast within the warp.
Our examination of the nvcc-generated PTX [17] assembly
found no evidence of this optimization, which suggests that
this is a just-in-time compiler optimization performed in the
driver when the code is loaded onto the GPU.

In either configuration, there is a gap in performance be-
tween the int and the other three data types. Old CUDA doc-
umentation mentions atomic units—GPU hardware elements
that handle atomic operations [18]. Unfortunately, there is a
lack of detailed description of these units in recent documents.
Nevertheless, this performance gap implies that there are more
integer than floating-point atomic units or that the integer
atomic unit’s add operation is much faster. Whereas ull is
faster than the floating-point types, it is slower than int
presumably because the tested GPUs have 32-bit architectures
(unlike the tested CPU architectures).

Fig. 10 summarizes the behavior of atomicAdd() on
private elements in a shared array. We show results for a stride
of 1 and 32 and for block counts of 1 and 128.

Since each thread writes to a different element, we do not
see the benefit of the warp-aggregated atomics like with the
previous single-variable test. In general, as we increase the
block count, the throughput per thread decreases. Interestingly,
for the block count of 1, the throughput trend is the same
regardless of stride. In contrast, stride fundamentally changes
the throughput trend for all types for the higher block counts.
At 128 blocks, the throughput is lower than at 1 block since
more SMs are sharing the L2 cache bandwidth. It seems that
the primary reason for the downward trend is the fixed number
of atomics that the hardware can perform per time unit.

Fig. 11 shows our results for atomicCAS() on a single
shared variable. Since this function contains an implied condi-
tional operation (the swap depends on whether the comparison
passes), we created two test versions: one that always passes
the comparison and another that always fails. We saw no
difference in performance and present the version that always
passes. Note that atomicCAS() does not natively support
floating-point types.

Interestingly, the 1-block configuration has a constant
throughput up to 4 threads. Similarly, while not shown, the 2-
block configuration has a constant throughput up to 2 threads.
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(a) 1 Block, Stride = 1
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(b) 1 Block, Stride = 32
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(c) 128 Blocks, Stride = 1
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(d) 128 Blocks, Stride = 32

Fig. 10: Throughput of atomicAdd() on private elements
in a shared array for different block counts and strides
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Fig. 11: Throughput of atomicCAS() on 1 shared variable

An atomicCAS() on its own cannot benefit from the same
warp-aggregation optimization as atomicAdd(), since the
result of the comparison may change the outcome for other
threads within the same warp. Thus, the constant throughput
drops earlier than with the atomicAdd() but otherwise
follows the same trend.

Fig. 12 summarizes the behavior of each thread performing
an atomicCAS() on its private element of a shared array.
We show results for a stride of 1 and 32, for block counts of
1 and 128.

These results resemble the trends of the atomicAdd()
(see Fig. 10), albeit with a different drop-off point for the
block count of 1 (Fig. 12a and 12b). Again, it seems that
there is a fixed maximum number of atomic CAS operations
that the hardware can handle concurrently.

Fig. 13 shows the results for atomicExch(). In the
baseline function, each thread repeatedly swaps the current
value in a single shared address with the value of its global
thread ID. The test function does so twice as many times.

These results are similar to the atomicCAS() (see
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(a) 1 Block, Stride = 1
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(c) 128 Blocks, Stride = 1
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Fig. 12: Throughput of atomicCAS() on private elements
in a shared array for different block counts and strides
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Fig. 13: Throughput of atomicExch() at 2 block counts

Fig. 11). As there is no arithmetic, the per-thread performance
is simply memory-bound. Since each thread is reading from
and writing to the same location, more active threads means
each thread has to wait longer for the other threads to finish
their atomic operation.

3) Thread Fences: Fig. 14 summarizes the behavior of a
device-wide __threadfence(). This test has the same
setup as the OpenMP flush; each thread updates its private
element in two distinct arrays, with the test function’s version
introducing a __threadfence() in between the updates.
We show the results for block counts of 1 and 128 and strides
of 1 and 32.

Interestingly, the overall pattern has little similarity to
the OpenMP flush counterpart, presumably due to memory
hierarchy differences between CPU and GPU. (Our CPUs have
coherent private L1 and L2 caches and a shared L3 cache
whereas our GPUs have incoherent L1 caches that are not
used for shared data and a shared L2 cache.) The throughput of
the CUDA fence is fairly constant regardless of thread count,
block count, or stride. It seems that the latency stems primarily
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Fig. 14: Throughput of __threadfence() for different
block counts and strides

from waiting for the load/store buffers to be drained and from
preventing the memory controller from reordering accesses to
improve performance.

The __threadfence_system() test is close in behav-
ior to its device-wide counterpart, so we do not show the
results. However, the behavior is more erratic since it involves
communication with the CPU across the PCIe bus.

We also tested __threadfence_block() using the
same test setup as __threadfence(). The throughput for
thread counts within the warp size is constant. However, at
thread counts above the warp size and at strides above 2, we
observe many runtimes at or near zero. This suggests that
our test function’s measured section is taking nearly the same
amount of time as the baseline function. We attribute this to the
fact that for this code (without fences), the memory accesses
within a thread block are not reordered relative to the code
with the fence.

4) Warp-Level Functions: We studied several types of
warp-level functions, all of which implicitly synchronize the
participating threads. For functions that require a mask to
specify the participating threads, we pass a mask that includes
all threads in the warp.

Fig. 15 shows the throughput of a __shfl_sync() at
two block configurations (full and double). We also tested the
up, down, and xor variants but observed no performance
difference, indicating that the implementations are identical
aside from the data movement pattern.
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Fig. 15: Throughput of CUDA __shfl_sync()

The behavior of the __shfl_sync() is the same as a
__syncwarp() because the former implies the latter. Since
the __shfl_sync() involves a data movement, the size of

the data type matters. The GPU hardware only supports 32-bit
shuffles, so the compiler generates two such instructions for
64-bit words. Thus, we see that the 64-bit types drop at half
the thread count compared to the 32-bit types.

We also measured the three warp voting
functions __ballot_sync(), __all_sync() and
__any_sync(). We were unable to reliably record
__ballot_sync(), likely due to some optimization
preventing it from being properly generated/executed.
In a real situation, we expect it to behave similarly to
the other voting functions, which behave identically to
__syncwarp() (see Fig. 8), but with a slightly lower
absolute throughput.

5) Recommendations: Our CUDA results lead to the
following recommendations. 1) __syncthread() perfor-
mance decreases with increasing warp counts, so smaller block
sizes might help in a barrier-heavy code. 2) __syncwarp()
throughput is largely constant and can be used without con-
sideration for block or thread count. 3) int atomic adds
and CAS are preferred over other data types. 4) Running
multiple atomic adds/CASs on the same memory location
slows performance, so overlap should be avoided. 5) Running
too many simultaneous atomics should be avoided, as we
observed limits on the number of atomics per unit of time.
6) Thread fences incur largely constant overhead and can be
used as necessary without regard for thread count. 7) Warp
shuffles are fast but decrease throughput when the SM is nearly
fully loaded—moreso for 8-byte types. Still, they should be
used when possible to avoid memory traffic. 8) In general,
codes should always use full warps to maximize performance
except for atomic operations, where partial warps can give
higher performance. That is, “turning off” threads in a warp
that do not need to execute an atomic with an if-statement
may yield performance benefits.

VI. RELATED WORK

Several prior works benchmark or otherwise evaluate the
behavior of CPU [19] [20] or GPU [21] [22] [23] synchro-
nization primitives in a variety of contexts. We highlight the
closest to our work in the following.

Brovenetsky et al. [24] created CLOMP, a benchmark that
characterizes the overhead introduced by OpenMP synchro-
nizations. CLOMP’s main goal is to identify the amount of
work required to compensate for the introduced overhead. Our
work differs in that we observe behaviors of synchronization
primitives at per-thread granularity, and our experiments are on
generalized access patterns rather than actual codes. Further-
more, we test different sets of primitives and include CUDA.

Bialas and Strzelecki [10] created a micro-benchmark to
determine the cost of thread divergence in CUDA on several
architectures. They found that the cost of a diverging branch
is essentially constant, depending on the architecture. Our
timing approach is heavily inspired by their work, albeit for
measuring the behavior of synchronization primitives.

O’Neil and Burtscher [25] characterize the performance
of several irregular GPU codes, identifying the particular
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bottlenecks (e.g., thread divergence, stalls for atomics) that
occur and how much they affect the application runtime.
Additionally, they perform simulations to understand the im-
pact of cache sizes, cache and memory latencies, etc. Our
work measures the throughput of synchronization primitives
on physical hardware.

Lee et al. [26] performed a detailed study and analysis
to debunk claims that GPUs outperform multi-core CPUs
by a factor of 10 to 1,000. They found that the average
performance gap was only 2.5×. Their work highlights that in-
herent differences between CPU and GPU architectures make
them appropriate for different types of problems. Whereas our
primary goal is not a direct comparison of GPU and CPU
performance, our results do illustrate how effective the various
synchronization primitives are on the two types of devices.

VII. SUMMARY AND CONCLUSIONS

This work presents a test framework to measure the through-
put of individual OpenMP and CUDA synchronization prim-
itives under a variety of parameters. The code and results
are open-source and publicly available [6]. Through our ex-
periments, we arrive at a number of recommendations for
parallel-program developers. For example, we suggest that
OpenMP programmers be mindful of false sharing and avoid
the utilization of critical sections. Furthermore, we observe
that the use of hyperthreading has little to no effect on
per-thread throughput. Section V-A5 provides further recom-
mendations. For CUDA, we recommend that programmers
stay wary of overlapping memory accesses as well as the
number of simultaneous atomic operations. We also generally
recommend the use of whole warps except for certain atomics.
Section V-B5 lists additional recommendations. We hope this
information will help software engineers write more efficient
parallel CPU and GPU codes and proves useful to hardware
manufacturers and parallel-programming-library developers.
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APPENDIX

A. Abstract

This artifact description provides information about the
workflow required to execute the testing framework for mea-
suring the execution time of synchronization primitives on
a supported system. We describe how the software can be
obtained as well as the necessary steps to install and set
up scripts to automate running the synchronization-primitive
measurements across all parameters. Furthermore, the artifact
contains the raw results and figures obtained from the three
tested systems specified in the paper. Some of them were not
presented in the paper for the sake of avoiding redundancy.
Here they are provided in full.

B. Artifact check-list (meta-information)
• Program: SyncPerformance v1.0.0
• Compilation: GNU C++ (g++) and NVIDIA CUDA (nvcc)

compiler
• Hardware: Our results are from the following systems, but the

codes can be run on any supported hardware and should yield
similar trends.

– System 1: Intel Xeon E5-2687 v3, NVIDIA GeForce RTX
2070 SUPER

– System 2: Intel Xeon Gold 6226R, NVIDIA A100 40GB
– System 3: AMD Ryzen Threadripper 2950X, NVIDIA

GeForce RTX 4090
• Output: For each synchronization primitive test code: raw

runtime results and a figure summarizing the behavior in terms
of throughput.

• Time needed to complete experiments: Approximately 72
hours for all codes on a single system. This can be more or
less—primarily depending on the number of cores in the CPU
and the number of SMs in the GPU, but also other factors.

• Publicly available: The code and results obtained from our
test systems are publicly available.

• Archived: https://doi.org/10.5281/zenodo.13227900

C. Description

1) How to access: The software can be obtained from
GitHub: https://github.com/burtscher/SyncPerformance.

$ git clone \
https://github.com/burtscher/SyncPerformance.git

To set the repository to the paper version, run:

$ git checkout v1.0.0

2) Hardware dependencies: The experiments can be exe-
cuted on any system that meets the following requirements:

• OpenMP tests require a multicore CPU
• CUDA tests require a CUDA-enabled NVIDIA GPU with

a minimum compute capability of 7.5
3) Software dependencies: All code is intended to run in

a Linux environment. The requirements for compiling and
executing individual test codes on a CPU and GPU are:

• g++ version 12.2 or higher
• nvcc version 12.0 or higher
We provide Python scripts to automate compiling and

running each test code across parameters as well as generating

subsequent tables and figures. The requirements to run these
scripts are:

• Python 3.11
• Numpy (https://numpy.org/) version 1.25 or later
• Matplotlib (https://matplotlib.org/) version 3.8 or later
• Seaborn (https://seaborn.pydata.org/) version 0.13.2 or

later

D. Installation

Install the necessary Python packages. It is recommended
to install these with pip, i.e.:

$ pip3 install numpy matplotlib seaborn

1) CUDA setup: If testing CUDA codes, it may be neces-
sary to specify the compute capability (see https://developer.
nvidia.com/cuda-gpus) when compiling codes to match a
system’s GPU, especially if the system has multiple GPUs.
To do so, create config.py in the root of the repository.
Inside, specify the desired nvcc “-arch=” argument. For
example, for an NVIDIA GeForce RTX 4090 GPU, which
has a compute capability of 8.9, config.py should simply
contain:

nvcc_arch = "sm_89"

A working example is provided in
./config.py.example and can be copied. If the
compute capability is not a concern (e.g., if only running
OpenMP codes), this step can be safely ignored, and the code
will default to nvcc_arch = "native".

If the system has multiple GPUs, ensure the GPU of interest
is selected before running any scripts, e.g.:

$ export CUDA_VISIBLE_DEVICES=1

E. Experiment workflow

Before launching any experiments, care should be taken
to minimize running background processes. Otherwise, the
yielded measurements could be inaccurate.

1) Whole experiment (all codes): To run all OpenMP and
CUDA codes with a single command, run:

$ ./launch.py all

The script will list every code that will be compiled and run
and prompt the user for confirmation to proceed.

2) Partial experiment (OpenMP or CUDA only): To run
only the OpenMP or CUDA set of codes, specify which as an
argument. For example, to only run the OpenMP codes:

$ ./launch.py openmp

3) Individual codes: To run individual codes across all
parameters, list the paths to the desired codes. For example,
to launch the code that measures an OpenMP atomic update
on a single shared variable, run:

$ ./launch.py ./codes/omp/omp_atomicadd_scalar.cpp
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F. Evaluation and expected results

Each test’s results will be output to a corresponding di-
rectory in ./results/<hostname>/. If the test uses
different strides, there will be subdirectories for each stride.
Inside is a log of the raw program output (log.txt), a binary
file containing the runtime results in Python data structures
(runtimes.bin), a CSV file listing the runtime of the
single primitive across all parameters (runtimes.csv), and
a figure summarizing the behavior of the primitive across
parameters in terms of throughput (<testname>.pdf). For
the CUDA tests, one figure will be generated for each block
configuration.

The results may vary from those presented in the paper
if run on a system with different specifications than ours.
Nonetheless, we expect the same general trends to be evident
on a majority of similar hardware.

G. Experiment customization

Global test parameters (e.g., N_UNROLL, N_RUNS) can be
found and edited in ./include/config.h. Other per-
code parameters (e.g., n_iter, thread_range) can be
found in ./run_tests.py for both OpenMP and CUDA
in the functions execute_omp() and execute_cuda(),
respectively.

H. Notes

We provide the raw results and figures obtained
from the three tested systems specified in the paper in
./results/system*/.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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